SIEMENS

Sensoren Magnetfeldhalbleiter Teil 1 Datenbuch 1982/83

Zugehörige Druckschriften

Benötigen Sie zur Ergänzung Ihrer Informationen weitere technische Unterlagen, so fordern Sie bitte die aktuelle Angebotsliste "Produktinformation zum Thema Bauelemente der Elektronik" an.

Die halbjährlich neu erscheinende Angebotsliste mit anhängender Bestellkarte bekommen Sie bei Ihrer nächstgelegenen Siemens-Dienststelle (siehe Geschäftsstellenverzeichnis).

Herausgegeben von

Siemens AG, Bereich Bauelemente, Balanstraße 73, 8000 München 80.

Mit den Angaben in diesem Buch werden die Bauelemente spezifiziert, nicht Eigenschaften zugesichert.

Für die angegebenen Schaltungen, Beschreibungen und Tabellen wird keine Gewähr bezüglich der Freiheit von Rechten Dritter übernommen.

Liefermöglichkeiten und technische Änderungen vorbehalten.

Fragen über Technik, Preise und Liefermöglichkeiten richten Sie bitte an unsere Zweigniederlassungen im Inland, Abteilung VB, oder an unsere Landesgesellschaften im Ausland (siehe Geschäftsstellenverzeichnis).

1.	Inhaltsverzeichnis	Seite 6
2.	Magnetik	11
2.1.	Magnetische Einheiten	. 11
2.1.1.	Magnetischer Fluß ϕ	
2.1.2.	Magnetische Induktion B	. 11
2.1.3.	Magnetische Induktion B	. 11
2.1.4.	Magnetische Spannung V	. 11
2.1.5.	Übersicht (Tabelle 1)	. 12
2.2.	Elektromagnetischer Kreis	. 12
2.3.	Permanentmagnetischer Kreis	
2.3.1.	Dimensionierung eines Magnetsystems	. 14
2.3.2.	Anordnungsbeispiele	
	Allorunungsbeispiele	. 10
3.	Hallgeneratoren	19
3.1.	Grundlagen	. 19
3.2.	Aufbau der Hallgeneratoren	. 19
3.3.	Begriffe und allgemeine Daten	. 22
3.3.1.	Nennwert des Steuerstromes I_{1n}	. 22
3.3.2.	Magnetische Induktion B	
3.3.3.	Nennwert des magnetischen Steuerflusses $arPhi_{n}$. 22
3.3.4.	Leerlaufhallspannung U_{20}	
3.3.5.	Induktionsempfindlichkeit im Leerlauf K _{B0}	. 23
3.3.6.	Abschlußwiderstand R_{LL} für lineare Anpassung im jeweils angegebenen	
0.0.0.	Induktionsbereich	. 23
3.3.7.	Fehler und Empfindlichkeit bei linearer Anpassung	. 24
3.3.8.	Ohmsche Nullkomponente R_0	
3.3.9.	Induktive Nullkomponente A_2	
3.3.10.	Temperaturverhalten	
3.3.11.	Maximal zulässiger Steuerstrom I_{1M}	
3.3.12.	Wärmeleitwert <i>G</i> th zwischen Halbleiterschicht und Außenseite des Mantels	
3.3.13.	Höchstzulässige Oberflächentemperatur	
3.4.	Hallgeneratoren und ihre Anwendung	. 26
3.4.1.	Messung der magnetischen Induktion B	. 27
3.4.2.	Feldregelung	
3.4.3.	Potentialfreie Strommessung	. 28
3.4.4.	Strommessung an Leitungen mittels Magnetfeldstärke an der	. 20
J.7.7.	Strommessung an Leitungen mittels Magnetfeldstärke an der Oberfläche	. 29
3.4.5.	Temperaturkompensation von InAs-Hallgeneratoren bei geringer	. 23
0. 1.0.	Aussteuerung	. 30
3.4.6.	Anwendung von Signalhallgeneratoren	. 31
3.4.7.	Verlauf der Hallspannungen beim Vorbeibewegen an verschiedenen	. 31
J.4.7.	Magnetanordnungen	. 32
3.4.7.1.	Ansteuerung mit Einzelmagneten	. 32
3.4.7.2.	Ansteuerung mit Magnetpaar	. 32
3.4.7.2. 3.4.7.3.	Ansteuerung mit enger Magnetreihe	
3.4.7.3. 3.4.7.4.	Ansteuerung von Hallgeneratoren durch Magnete oder Eisenteile in	. აა
J.4.1.4.		20
3.4.8.	verschiedenen Anordnungen	
3.4.8. 3.4.9.		
ა.4.ჟ.	Kontaktlose Kommutierung von Gleichstrommotoren mit Hallgeneratoren	. 36

		eite 37
3.5.	Einbauhinweise für Hallgeneratoren (Tabelle 4)	3/
4.	Feldplatten	40
4.1.	Grundlagen	40
4.2.	Aufbau der Feldplatten	41
4.2.1.	Feldplattensystem	41
4.2.2.	Feldplattenarten	42
4.2.3.	Feldplattendifferentialfühler	43
4.2.4.	Kontaktlose Potentiometer	45
4.3.	Begriffe und allgemeine Daten	46
4.3.1.	Grundwiderstand R_0	46
4.3.2	Widerstand $R_{\rm B}$ im Magnetfeld	47
4.3.3.	Temperaturabhängigkeit des Feldplattenwiderstandes	49
4.3.4.	Rechnerische Darstellung der Feldplatten-Kennlinien	54
4.3.4.1.	Übersicht der Polynomkoeffizienten (Tabelle 6)	54
4.3.5.	Vormagnetisierung	55
4.3.6.	Offener magnetischer Kreis	55
4.3.7.	Geschlossener magnetischer Kreis	56
4.3.8.	Mittensymmetrie M	56
4.3.9.	Nullspannung U_{A0}	57
4.3.10.	Frequenzverhalten	57
4.3.11.	Wärmeleitwert	58
4.3.12.	Festlegung der Betriebsspannung	59
4.3.13.	Differential-Feldplatte	59
4.3.13.1.	Differential-Feldplatte in Brückenschaltung	60
4.3.14.	Temperaturkompensation in Brückenschaltung	60
4.3.14.1.	Verwendung temperaturabhängiger Widerstände	60
4.3.14.2.	Ausnützung der Temperaturabhängigkeit der Arbeitspunktinduktion B_0	60
4.3.14.3.	Ausnützung der Temperaturabhängigkeit des Innenwiderstandes der	
4.0.14.0.	Differential-Feldplatte	60
4.3.15.	Arbeitspunkt von vormagnetisierten Differential-Feldplatten	62
4.4.	Anwendung von Feldplatten und Feldplattenfühlern	64
4.4.1	Drehzahlerfassung mit Feldplatten-Differential-Fühler	64
4.4.2.	Drehsinnerfassung mit Feldplatten-Differential-Fühler	65
4.4.3.	Ansteuerung von Transistoren mit Feldplatten	66
4.4.4.	Berührungslose Geschwindigkeitsmessung von Rotations- und	
4.4.4.	Linearbewegungen/Feldplatten-Wirbelstromtachometer	66
4.4.5.	Winkelschrittgeber mit Feldplatten-Differential-Fühlern	67
4.4.6.	Stellungsanzeige mit Feldplatten-Differential-Fühlern	68
4.4.0. 4.5 .	Typenschlüssel	69
4.6.	Einbauhinweise	70
7.0.		

5.	Datenteil																			
																				74
5.1.	Inhalt geordnet nach Anv	ve	nd	lun	gs	get	oie	ten	1											74
5.2.	Magnetfeldhalbleiter																			76
5.2.1.	Hallgeneratoren																	•	·	76
5.2.2.	Feldplatten													·	•	•	•	•	•	99
5.3.	Positionssensoren						į		•	·	•	•	•	•	•	•	•	•	•	
5.3.1.	Hallsensoren					Ċ			Ċ	Ċ	•	•	•	•	٠	•	•	•	•	120
5.3.2.	Feldplattensensoren .					-	•	•	·		•	•	•	•	•	•	•	•	•	
5.3.3.	Kontaktlose Potentiomete	r		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	157
5.4.	Angahan zur Qualität		•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	
J. T .	Angaben zur Qualität	•	•	•	•	•	٠	•	•	٠	٠	٠		•	٠	٠	•	•	•	168

Magnetik			

2. Magnetik

2.1. Magnetische Einheiten

2.1.1. Magnetischer Fluß Φ

Der magnetische Fluß Φ ergibt sich als Produkt aus elektrischer Spannung und Zeit. Kohärente Einheit des magnetischen Flusses ist das Weber (Wb) oder die Voltsekunde (V·s). Wenn der magnetische Fluß Φ sich während des Zeitintervalls 1 s gleichmäßig um eine Einheit ändert, wird in der ihn umschlingenden Windung die elektrische Spannung 1 V induziert. Somit gilt

$$1 \text{Wb} = 1 \text{V} \cdot \text{s}$$

Als Einheiten des magnetischen Flusses sind zwar auch alle Einheiten zulässig, die als Produkt aus einer zulässigen Einheit der elektrischen Spannung und einer zulässigen Zeiteinheit gebildet werden, doch wird davon wenig Gebrauch gemacht. Im allgemeinen wird die Einheit Voltsekunde dem Weber vorgezogen. Vielfache und Teile dürfen mit den gesetzlichen Vorsätzen sowohl vom Weber als auch von der Voltsekunde gebildet werden (Ausnahme).

2.1.2. Magnetische Induktion B

Die magnetische Induktion *B* bzw. die magnetische Flußdichte wird als Quotient aus magnetischem Fluß und Fläche gebildet. Kohärente Einheit ist das Tesla (T). Es wird definiert als die magnetische Induktion eines homogenen magnetischen Flusses, der eine Fläche von 1 m² senkrecht mit der Stärke 1 Wb durchsetzt; es gilt also

$$1 T = 1 Wb/m^2 = 1 V \cdot s/m^2$$
.

Als Einheiten der magnetischen Induktion sind auch alle Einheiten zulässig, die als Quotient aus einer zulässigen Einheit des magnetischen Flusses und einer zulässigen Flächeneinheit gebildet werden.

2.1.3. Magnetische Feldstärke H

Die magnetische Feldstärke H ist der Quotient aus elektrischer Stromstärke und Länge. Kohärente Einheit der magnetischen Feldstärke ist das Ampere je Meter (A/m). Sie ist definiert als die magnetische Feldstärke, die im leeren Raum von einem elektrischen Strom der Stärke 1 A durch einen unendlich langen geraden Leiter von kreisförmigem Querschnitt auf dem Rand einer zum Leiterquerschnitt konzentrischen Kreisfläche von 1 m Umfang hervorgerufen wird.

Als Einheiten der magnetischen Feldstärke sind auch alle Einheiten zulässig, die als Quotient aus einer zulässigen Einheit der elektrischen Stromstärke und einer zulässigen Längeneinheit gebildet werden.

2.1.4. Magnetische Spannung V

Im homogenen Magnetfeld ist die magnetische Spannung V das Produkt aus der magnetischen Feldstärke H und der betrachteten Weglänge / längs einer Feldlinie. Die Einheit der magnetischen Spannung ist das Ampere.

Magnetik

2.1.5. Übersicht (Tabelle 1):

	SI-Einheit		bisherige Ei	nheit	Beziehungen
Induktion <i>B</i> Fluß Φ Mag. Feldstärke <i>H</i>	Tesla Weber Ampere/Meter	T Wb A/m	Gauß Maxwell Oersted	G M Oe	$1 G = 10^{-4} T$ $1 M = 10^{-8} Wb$ $1 Oe = \frac{10^{3}}{4 \pi} A/m \approx 80 A/m$
Mag. Spannung V	Ampere	Α	Gilbert	Gb	1 Gb = 1 Oe ⋅ cm

2.2. Elektromagnetischer Kreis

Das Magnetfeld eines elektrisch erregten Magnetkreises stellt sich so ein, daß die magnetische Ringspannung des Kreises gleich der Stromdurchflutung in Aw und der gesamte magnetische Fluß an jeder Stelle gleich groß ist.

Zur Berechnung des magnetischen Kreises geht man daher von der Gleichung

 $\hat{\mathbf{D}}H \cdot \mathbf{d}s = I \cdot n$

aus.

Für einen ringförmigen Magnetkreis mit Luftspalt δ und konstantem Eisenquerschnitt entsprechend Abb. 1 ergibt sich unter Vernachlässigung der Streuung

 $H \cdot I = I \cdot n$.

H magn. Feldstärke

/ Weg des magn. Flusses

I Erregerstrom

n Windungszahl

Da der Weg des magn. Flusses im Eisen und in der Luft liegt, teilt man auf

$$H_{I} \cdot \delta + H_{Fe} \cdot I_{Fe} = I \cdot n.$$

Da der magn. Fluß im gesamten Kreis gleich ist, herrscht im Luftspalt die gleiche Flußdichte wie im Eisen.

$$B_{\mathsf{Fo}} = B_{\mathsf{L}}$$

Mit der Beziehung $B = \mu \cdot \mu_0 \cdot H$ ergibt sich

$$\frac{B_{\rm L} \cdot \delta}{\mu_{\rm 0}} + \frac{B_{\rm L} \cdot I_{\rm Fe}}{\mu \cdot \mu_{\rm 0}} = I \cdot n(\mu_{\rm Luft} = 1)$$

und daraus:

$$B_{L} = \frac{\mu_{0} \cdot I \cdot n}{\delta + \frac{I_{Fe}}{I}}$$

 $\mu_0 = 1,256 \cdot 10^{-6} \, \mathrm{Vs/Am}$ magnetische Feldkonstante

μ Permeabilität des Eisenkreises

Bei weichmagnetischen Materialien ist μ sehr groß (μ > 1000), so daß die Eisenweglänge von einigen Zentimetern schon gegenüber Luftspalten von wenigen zehntel Millimetern vernachlässigt werden kann. Die Luftspaltinduktion B_L ist dann der Stromdurchflutung proportional

$$B_{\mathsf{L}} = \frac{\mu_0 \cdot I \cdot n}{\delta}.$$

Die spezifischen magnetischen Eigenschaften des Eisens, beschrieben durch die Magnetfeldabhängigkeit der Permeabilität, treten dann nicht in Erscheinung. Bei zunehmender

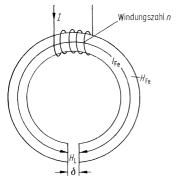


Abb. 1: Elektrisch erregter ringförmiger Magnetkreis mit einem Luftspalt

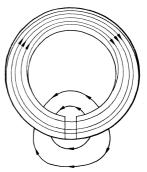
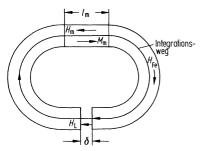


Abb. 2: Verlauf der Induktionslinien in einem Magnetkreis mit ausstreuendem Luftspalt

Stromdurchflutung wird der Eisenkreis schließlich gesättigt, die Permeabilität sinkt stark ab, und die Luftspaltinduktion steigt nur noch sehr schwach mit wachsender Durchflutung an.

Die Gleichung gilt nur unter der Voraussetzung konstanter Induktion $B_{\rm Fe}$ längs des Eisenwegs $I_{\rm Fe}$. Bei Vorhandensein eines Luftspaltes ist diese Voraussetzung nur annähernd erfüllt. Wie Abb. 2 zeigt, treten einige Feldlinien des Magnetflusses bereits vor Erreichen des Luftspaltes aus dem Eisenkreis aus und laufen seitlich am Luftspalt vorbei. Diese Erscheinung nennt man Luftspaltstreuung. Sie hat zur Folge, daß die magnetische Induktion entlang des Eisenwegs nicht konstant ist; vielmehr erreicht die magnetische Induktion ihren größten Wert auf der dem Luftspalt gegenüberliegenden Seite des Eisenkreises. Die für Feldplatten und Hallgeneratoren eingesetzten Magnetkreise sind meistens so beschaffen, daß die Luftspaltstreuung vernachlässigt werden kann; die oben ausgeführte Berechnung der Luftspaltinduktion ist deshalb in diesen Fällen mit hinreichender Näherung gültig.

2.3. Permanentmagnetischer Kreis


Abb. 3 zeigt einen Magnetkreis mit Erregung durch einen Permanentmagneten. Es wird angenommen, daß der Magnet der Länge $I_{\rm m}$ die konstante Magnetisierung $M_{\rm m}$ besitzt. Die Magnetisierung $M_{\rm m}$ eines Dauermagneten hängt von der Magnetisierungskurve des verwendeten permanentmagnetischen Werkstoffs und vom Arbeitspunkt des Magneten auf dieser Kurve ab. Dabei wird der Arbeitspunkt von den Abmessungen des Dauermagneten und der Geometrie des Eisenkreises bestimmt. Ist $H_{\rm m}$ die Feldstärke und $B_{\rm m}$ die magnetische Induktion im Innern des Permanentmagneten, so gilt

$$B_{\rm m} = \mu_0 H_{\rm m} + M_{\rm m}$$
.

Da die Stromdurchflutung des Magnetkreises Null ist, gilt

$$H_I \delta + H_{Fe}I_{Fe} + H_mI_m = 0.$$

Luftspaltfeldstärke $H_{\rm L}$ und Eisenfeldstärke $H_{\rm Fe}$ haben den gleichen Richtungssinn. Da die magnetische Ringspannung verschwindet, muß die Feldstärke $H_{\rm m}$ im Innern des Permanentmagneten der Flußrichtung entgegengerichtet sein.

Mit den Bedingungen und

Abb. 3: Magnetkreis mit Erregung durch einen Permanentmagneten

$$B_{\rm I} = B_{\rm Fe}$$

$$B_{\rm m} = B_{\rm Fe}$$

die aus der Quellenfreiheit der magnetischen Induktion folgen, ergibt sich dann für die Luftspaltinduktion

$$B_{L} = \frac{M_{\rm m}}{1 + \frac{\delta}{I_{\rm m}} + \frac{I_{\rm Fe}}{\mu I_{\rm m}}}.$$

Im allgemeinen ist $\delta \leqslant I_m$ und die Permeabilität μ des Eisenkreises sehr groß ($\mu > 1000$). Im Gegensatz zum elektrisch erregten Magnetkreis ist daher beim permanentmagnetischen Kreis unter der Annahme einer konstanten Magnetisierung des Dauermagneten die Luftspaltinduktion in erster Näherung unabhängig von der Luftspalthöhe δ . Wie bereits erwähnt, hängt aber die Magnetisierung M_m des Dauermagneten von der Lage des Arbeitspunktes auf der Magnetisierungskurve ab. Wird die Luftspalthöhe geändert, so verschiebt sich der Arbeitspunkt. Die Voraussetzung einer konstanten Magnetisierung ist also in Wirklichkeit nicht erfüllt. Bei steilen Magnetisierungskurven kann daher über diesen Einfluß eine starke Änderung der Luftspaltinduktion B_L in Abhängigkeit von der Luftspalthöhe δ auftreten.

Um eine hohe Luftspaltinduktion B_L zu erzielen, wählt man bei technischen Anwendungen den Querschnitt S_m des Permanentmagneten größer als den Luftspaltquerschnitt S_L . Die Flußbilanz lautet dann

$$B_{\rm m} \cdot S_{\rm m} = B_{\rm l} \cdot S_{\rm l}$$

Damit erhält man die Luftspaltinduktion:

tion:

$$B_{L} = \frac{M_{\text{m}}}{\frac{S_{L}}{S_{\text{m}}} + \frac{\delta}{I_{\text{m}}} + \frac{I_{\text{Fe}}}{\mu I_{\text{m}}}}$$

Ist $\delta \ll I_{\rm m}$ und μ sehr groß, so folgt in erster Näherung

$$B_{L} = \frac{S_{m}}{S_{L}} \cdot M_{m}.$$

Die Luftspaltinduktion ist also um den Faktor S_m/S_L höher als bei konstantem Kreisquerschnitt.

2.3.1. Dimensionierung eines Magnetsystems

Zur vereinfachten Abschätzung des Magnetfeldes im Falle konstanter Verhältnisse im Luftspalt dienen die nachstehenden Formeln. Auch sie gelten nicht exakt, sondern enthalten Anpassungsparameter.

Die Indizes "m" und "L" geben an, ob sich die Größen auf den Magneten oder den Luftspalt beziehen. Für die Feldstärke und Induktion im Magneten werden die Werte des Arbeitspunktes (H_a , B_a) eingesetzt.

Berechnung der Magnetlänge

(/ = Länge):

$$J_{\rm m} = \frac{B_{\rm L} \cdot \delta}{\mu_0 \cdot H_{\rm a}} \cdot \tau.$$

Berechnung des Magnetquerschnitts

(S = Querschnitt):

$$S_{\mathsf{m}} = \frac{B_{\mathsf{L}} \cdot S_{\mathsf{L}}}{B_{\mathsf{a}}} \cdot \sigma.$$

Berechnung des Magnetvolumens

(V = Volumen):

$$V_{\rm m} = \frac{B_{\rm L}^2 \cdot V_{\rm L}}{\mu_0 \cdot H_{\rm a} \cdot B_{\rm a}} \cdot \sigma \cdot \tau.$$

Bei gegebener Geometrie des Magnetkreises folgt aus den vorstehenden Formeln für die Luftspaltinduktion:

$$B_L = \sqrt{\frac{\mu_0 \cdot H_a \cdot B_a \cdot V_m}{V_L} \cdot \frac{1}{\sigma \cdot \tau}}.$$

Sie hängt somit vom Energieprodukt im Arbeitspunkt ab. Die maximale Luftspaltinduktion ergibt sich, wenn der $(B \cdot H)_{\text{max}}$ -Punkt als Arbeitspunkt gewählt wird.

Es ist zweckmäßig, den Arbeitspunkt etwas oberhalb des $(B \cdot H)_{\text{max}}$ -Punktes zu wählen, dessen Werte den Entmagnetisierungskurven der betreffenden Materialien entnommen werden können.

Da $B_{\rm L}$ nur mit der Wurzel aus Volumen bzw. Energieprodukt ansteigt, führt eine Verdoppelung der einen oder anderen Größe lediglich zu einer Erhöhung der Luftspaltinduktion um jeweils etwa 40 %.

Mit diesen Formeln läßt sich bei geeigneten Annahmen über den Streufaktor σ und den Faktor τ die Dimensionierung des Dauermagneten angeben.

Der Streufaktor σ gibt das Verhältnis des Gesamtflusses im Magneten zum Nutzfluß im Luftspalt an; er liegt im allgemeinen zwischen 1,2 und 5. Sein Kehrwert 1/ σ entspricht ungefähr dem nutzbaren Wirkungsgrad des Systems und liegt etwa zwischen 0,2 und 0,8.

Der Feldabfall entlang den Flußleitstücken und an inneren Luftspalten im magnetischen Kreis wird durch einen Faktor τ berücksichtigt; er liegt im Bereich von 1 bis 1,5 und kann im Mittel zu 1,2 angenommen werden.

Ein formal anderer Weg für die Dimensionierung eines Dauermagneten geht von der geeigneten Wahl des Entmagnetisierungsfaktors aus. So bestimmt sich z. B. für einen Stabmagneten ein optimales Längen-Dicken-Verhältnis aus der Forderung, daß die Entmagnetisierungsgerade mit der Steigung $-\mu_0/N$ die Entmagnetisierungskurve im gewünschten Arbeitspunkt (H_a , H_a) schneidet.

Aus dieser Forderung wird der für den betreffenden Magnetwerkstoff optimale Entmagnetisierungsfaktor Nfestgelegt.

2.3.2. Anordnungsbeispiele

Bei einem Magnetsystem können Magnete und Flußleitstücke unterschiedlich angeordnet werden. Nachstehend geben wir ein Beispiel für die Auswirkung eines unterschiedlichen Aufbaues gemäß der Abb. 4 A, B, C (Dauermagnetteile schraffiert):

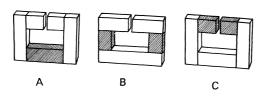
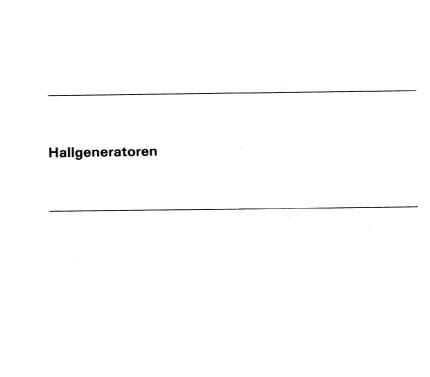



Tabelle 2: Magnetische Meßwerte von drei Dauermagnetkreisen aus denselben Elementen in unterschiedlicher Anordnung.

Abb.4

Systemausführung		Einheit	Α	В	С
Luftspaltinduktion Arbeitspunkt für B Arbeitspunkt für H Energieprodukt im Arbeitspunkt maximales Energieprodukt Streufaktor (aus Meßwerten)	B _L B _a H _a B _a ⋅H _a	T T A/cm mWs/cm ³ mWs/cm ³	0,335 1,07 154 16,5 32,0 3,2	0,435 1,05 200 21,0 32,0 2,4	0,61 1,0 280 28,0 32,0 1,64
Geometrische Abmessungen des	Systems				
Länge Breite des Fensters Luftspaltlänge Querschnitt		mm mm mm × mm	12 25,5 1,5 10×10	12 25,5 1,5 10×10	12 25,5 1,5 10×10

Hieraus folgt, daß bei gleicher Luftspaltabmessung ein Magnetkreis mit angegebenen Einzelteilen dann am wirksamsten ausgelegt ist, wenn sich die Magnete selbst möglichst in der Nähe des Luftspaltes befinden. Der Streufaktor ist dann am geringsten.

3.1. Grundlagen

Setzt man einen bandförmigen, stromdurchflossenen Leiter einem transversalen Magnetfeld aus, so werden die bewegten Elektronen durch die Lorentzkraft zur Seite abgelenkt. Durch die Ansammlung der Elektronen an einem Rand des Leiters entsteht ein elektrisches Feld quer zum Leiter, dessen Kraft auf die Elektronen im Gleichgewichtsfall die Lorentzkraft gerade aufhebt.

Die elektrische Feldstärke quer zum Leiter entspricht einer Spannung zwischen den Rändern, der Hallspannung $U_{\rm H}$. Diese Hallspannung tritt in jedem Leiter auf, der einem transversalen Magnetfeld ausgesetzt ist. Ihr Wert ist jedoch wegen der geringen Abmessungen der Leiter und vor allem der sehr geringen Geschwindigkeit der im Leiter bewegten Elektronen so klein, daß sie im Normalfall nicht meßbar ist.

Die technische Anwendung des Halleffekts wurde erst ermöglicht durch die Entdeckung der ungewöhnlich hohen Elektronenbeweglichkeit bestimmter halbleitender III-V-Verbindungen, z. B. des Indiumantimonids InSb. Bei diesen Halbleitermaterialien wird der Stromfluß nicht von sehr vielen, äußerst langsam bewegten Elektronen getragen, sondern von wenigen, sehr schnell bewegten Elektronen. Dementsprechend ist die Hallspannung um mehrere Größenordnungen höher als bei Metallen und kann bis zu einigen 100 mV betragen. Diese kann verstärkt und elektronisch leicht ausgewertet werden.

3.2. Aufbau der Hallgeneratoren

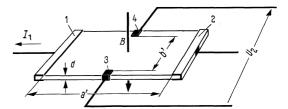


Abb. 5: Prinzipieller Aufbau eines Hallgenerators (Pfeilrichtungen für n-Halbleiter)

Ein langgestrecktes Plättchen aus geeignetem Material von der Dicke d (Abb. 5) wird in der Längsrichtung von einem Strom I_1 (Steuerstrom) durchflossen und senkrecht zur Fläche von einer magnetischen Induktion B (Steuerfeld) durchsetzt. Bei gleichzeitiger Einwirkung dieser beiden Steuergrößen entsteht zwischen den Punkten 3 und 4 eine Potentialdifferenz (Leerlaufhallspannung U_{20}) von der Größe

$$U_{20} = \frac{R_{\rm h}}{d} \cdot I_1 \cdot B.$$

Die Formel zeigt das für die Anwendung wesentlichste Merkmal des Halleffektes, nämlich die Darstellung des Produktes zweier elektrischer Größen (Strom und magnetische Induktion) wieder als elektrische Größe.

Rh ist eine Materialkonstante (Hallkonstante).

Die metallisch leitenden Elektroden 1 und 2 sind für die Zuführung des Steuerstromes, die Elektroden 3 und 4 zur Abnahme der Hallspannung ausgebildet. Die wirksame Fläche des Hallgenerators wird gebildet aus der Länge a' und der Breite b' (vgl. Abb. 5).

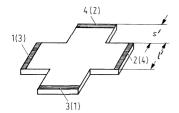
Für die Herstellung der Halbleiterschicht finden folgende Technologien Anwendung:

1. Kristalline Schicht:

Halbleiterkörper wird aus erschmolzenen Halbleiterstäben durch Sägen, Schleifen und Ätzen gewonnen: Dicken 5 bis 100 µm. Trägerplatte und Halbleiterschicht sind mit einer 1 bis 2 µm dicken Epoxidharzschicht verbunden.

2. Aufgedampfte Schicht:

Halbleiterschicht ist auf das Trägerplättchen aufgedampft: Dicke 2 bis 3 μm . Besonders geeignet für Anwendungen bei extrem tiefen und hohen Temperaturen.


3. Epitaktische Schicht:

Die Halbleiterschicht wird auf einem Substrat aus der Gas- oder Flüssigphase abgeschieden: Dicke etwa 10 μm_{\cdot}

4. Ionenimplantierte Schicht:

Die Halbleiterschicht wird hergestellt durch Implantieren und thermisches Aktivieren von geeigneten Ionen in semi-isolierendes kristallines Halbleitermaterial: Dicke etwa 0.4 µm.

Durch die Formgebung des Hallplättchens (Abb. 6) kann der Hallgenerator für die vorgesehene Meßaufgabe optimiert werden.

Rechteckige Form: $R_{\rm LL}/R_{\rm 20} \approx 3$ Hohe Halleistung

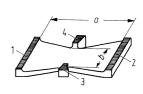


Abb. 6: Formen von Hallplättchen Kreuzform:

Kreuzform: Symmetrisch; Steuer- und Hallelektroden vertauschbar; hohe Induktionsempfindlichkeit $R_{LL}/R_{20} > 10$; s'/l' = 0,3...1,0

- 1, 2 Steuerelektroden
- 3,4 Hallelektroden
- a Länge in Steuerstromrichtung
- b effektive Breite des Hallplättchens
- s Hallelektrodenbreite

R_{LL} Abschlußwiderstand für lineare Anpassung

Schmetterlingsform: Hohe Flußempfindlichkeit $K\Phi_0$ bei Bündelung des Flusses auf die Mittelfläche $\frac{a}{2} \cdot b$

Die Anpassung an die magnetische Steuergröße verlangt vielseitige Ausführungen hinsichtlich Material und Aufbau.

Offene Bauweise (Abb. 6 a): Das Hallplättchen 1 ist auf ein unmagnetisches, dünnes Trägerplättchen 2 aufgebracht und nur von einer Haut 5 aus Isolierlack oder Epoxidharz geschützt. Besonders geeignet für Magnetfeldmessung in engen Luftspalten. Modifikationen sind die Zungensonde und die Axialfeldsonde.

Kastenbauweise (Abb. 6 b): Das Hallplättchen 1 ist durch einen aus Grundplatte 2, Rahmen 3 und Deckplatte 4 bestehenden Kasten geschützt; Kastenmaterial Al₂O₃. Angewandt bei Präzisionssonden für Feldmessung in Luftspalten größer als 2 mm. Modifikationen sind die Tangentialfeldsonde (Hallplättchen 1 an der Vorderkante) und die Mehrfachsonden zur Messung von Feldgradienten. Wird nur einseitig gekühlt, so ist stets die Grundplatte zu kühlen (Typenangabe auf der Deckplatte).

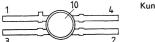
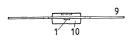

Abb. 6 a – d:
Hallgenerator-Bauformen

Abb. 6 c


1 Hallplättchen
2 Grundplatte
3 unmagnetischer Distanzrahmen
4 Deckplatte
5 Lack- oder Epoxidharzabdeckung
6 Ferritsteg
7 Steuerstromzuführungen
8 Hallanschlüßfahnen
10 Kunststoffumhüllung

Modifikation der Kastenbauweise:

(Abb 6 c): Grund- und Deckplatte aus Ferrit; im geschlossenen magnetischen Kreis große Durchflutungsempfindlichkeit, da der effektive Luftspalt gleich der Hallplättchendicke ist.

Kunststoffgehäuse

(Abb. 6 d): Umhüllung aus Kunststoff (Duroplast); Anschlüsse aus veredelter Metallfolie; robuste Bauweise für extreme Umgebungsbedingungen

Abb.6d

3.3. Begriffe und allgemeine Daten

Die in den Datenblättern angegebenen Kenndaten und Nennwerte sind auf eine Umgebungstemperatur von $\pm 25^{\circ}$ C bezogen.

3.3.1. Nennwert des Steuerstromes I_{1n}

Der Nennsteuerstrom ist so festgelegt, daß beim Betrieb des Hallgenerators in ruhender Luft die Halbleiterschicht eine Übertemperatur von 10 bis 15°C annimmt. Die bei dieser Temperaturerhöhung sich ergebende Änderung der Hallkonstante und damit der Leerlaufhallspannung ist aus dem Bild 7 bzw. aus dem in den Datenblättern angegebenen Temperaturkoeffizienten β zu ersehen.

Der Hallkoeffizient $R_{\rm h}$ ist eine temperaturabhängige Materialkonstante (vgl. Abb. 7). $R_{\rm h}$ ist bei Indiumarsenid (InAs) und Indiumarsenidphosphid (InAsP) und GaAs bis zu Induktionen von 15 T (= 150 kG), bei Indiumantimonid (InSb) von etwa 5 T (= 50 kG) nicht magnetfeldabhängig.

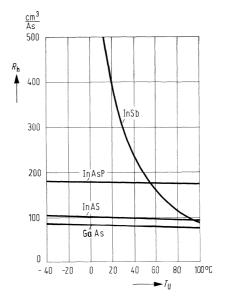


Abb. 7: Abhängigkeit der Hallkonstanten R_h von der Temperatur T_U bei verschiedenen Materialien $R_h = f(T_U)$

3.3.2. Magnetische Induktion B

Um quantitative Aussagen über die Proportionalität zwischen Hallspannung und magnetischer Induktion machen zu können, muß der Steuerfeldbereich abgegrenzt werden. Der Steuerfeldbereich, auf den sich sämtliche Linearisierungsangaben beziehen, wird jeweils in den Datenblättern angegeben. Durch das Überschreiten dieses angegebenen Bereiches wird der Hallgenerator nicht gefährdet. Dabei ist zu beachten, daß mit zunehmender magnetischer Induktion der steuerseitige Innenwiderstand des Hallgenerators sich erhöht. Vor allem bei Induktionen über 2 Tesla (1 Tesla = 10^4 Gauß) muß die Höhe des Steuerstroms dann so gewählt werden, daß die maximal zulässige Temperatur der Halbleiterschicht (120° C) nicht überschritten wird.

3.3.3. Nennwert des magnetischen Steuerflusses Φ_{n}

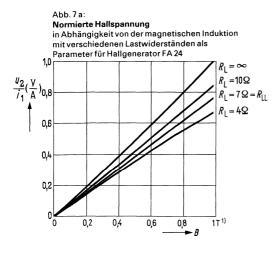
Bei Hallgeneratoren mit ferromagnetischem Mantel wird der Nennwert des Steuerflusses angegeben. Der als Nennwert angegebene Steuerfluß liegt unter dem Sättigungsknick des Mantelmaterials. Der angegebene Linearitätsfehler bezieht sich auf den Nennwert des magnetischen Steuerflusses und gilt in dem Bereich zwischen positivem und negativem Nennwert des magnetischen Steuerflusses. Durch das Überschreiten des Nennwertes wird der Hallgenerator nicht gefährdet.

3.3.4. Leerlaufhallspannung U_{20}

In den Datenblättern ist als Leerlaufhallspannung U_{20} die Spannung angegeben, die der unbelastete Hallgenerator bei dem Nennwert des Steuerstroms I_{1n} und der angegebenen magnetischen Induktion B erzeugt. Bei Hallgeneratoren mit ferromagnetischem Mantel bezieht sich die Leerlaufhallspannung auf den Nennwert des Steuerstromes I_{1n} und den Nennwert des magnetischen Steuerflusses \mathcal{P}_{n} .

Die in den Datenblättern angegebenen Werte der Leerlaufhallspannung sind untere Grenzwerte. Maximalwerte können um den Faktor 1,5 höher liegen.

3.3.5. Induktionsempfindlichkeit im Leerlauf K_{B0}


Die Induktionsempfindlichkeit im Leerlauf ist definiert durch die Gleichung

$$K_{B0} = \frac{U_{20}}{I_{1n} \cdot B} [V/AT].$$

3.3.6 Abschlußwiderstand $R_{\rm LL}$ für lineare Anpassung im jeweils angegebenen Induktionsbereich

Abb. 7 a zeigt die Abhängigkeit der Hallspannung vom Steuerfeld B für verschiedene Abschlußwiderstände R_L beim Hallgenerator FA 24. In Ordinatenrichtung ist die auf die Steuerstromeinheit bezogene Hallspannung aufgetragen. Wie man sieht, wird die beste Linearität zwischen der auf die Steuerstromeinheit bezogenen Hallspannung und dem Steuerfeld nur für einen bestimmten Abschlußwiderstand R_{LL} erreicht.

Der Abschlußwiderstand $R_{\rm LL}$ für optimale Linearität muß für jeden Hallgenerator experimentell ermittelt werden. Der ungefähre Wert von $R_{\rm LL}$ ist im Datenblatt angegeben.

1) 1 Tesla = 104 Gauß

den Linearisierungsfehler in Abhängigkeit vom Lastwiderstand im Induktionsbereich von 0 bis 1 Tesla 6 5 Linearisier ungsfehler F 4 3 2 1 2 4 6 16 Ω 8 10 12 14

Abschlußwiderstand R_1 -

Beispiel für den Hallgenerator FA 24

Abb. 7 b zeigt als

Abb. 7b

3.3.7. Fehler und Empfindlichkeit bei linearer Anpassung

Der Zusammenhang zwischen Hallspannung und magnetischer Induktion ist auch im Fall optimaler Anpassung, d. h. bei Abschluß des Hallgenerators mit dem Widerstand $R_{\rm LL}$, nicht linear.

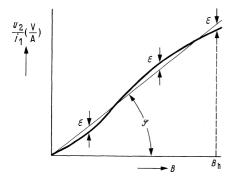


Abb. 9: Kennlinie des Hallgenerators mit optimalem Abschlußwiderstand $R_{\rm LL}$ und Definition des Linearisierungsfehlers

Zur Definition des Linearisierungsfehlers wird im jeweils angegebenen Induktionsbereich eine Gerade so durch die Kennlinie gelegt, daß die maximalen Abweichungen oberhalb und unterhalb der Geraden etwa gleich groß sind (vgl. Abb. 9). Der Anstieg dieser Geraden wird als mittlere Empfindlichkeit $K_{\rm lin}$ bei optimaler Anpassung bezeichnet. Entsprechend der in der Meßtechnik üblichen Fehlerdefinition wird die maximale Abweichung der auf die Steuerstromeinheit bezogenen Hallspannung von der Geraden mit dem Anstieg $K_{\rm lin}$ auf den Meßbereichsendwert bezogen und als Linearisierungsfehler bezeichnet.

Dabei ist

$$F_{\text{lin}} = \frac{\varepsilon_{\text{max}}}{K_{\text{lin}} \cdot B_{\text{h}}}$$

$$K_{\text{lin}} = \operatorname{tg} \varphi$$
.

Der kleinste Linearisierungsfehler wird erreicht, wenn man den Abschlußwiderstand $R_{\rm L}$ so wählt, daß im unteren Aussteuerbereich die Magnetfeldabhängigkeit der Empfindlichkeit und im oberen Teil die Widerstandserhöhung von R_{20} überwiegt (Abb. 8 c).

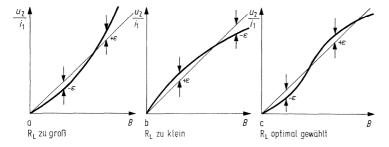
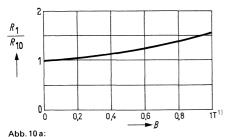



Abb. 8 a–c: Linearisierung der Kennlinie durch geeignete Wahl des Lastwiderstandes $R_{\rm L}$

ADD. 10 a: Steuerseitiger Innenwiderstand in Abhängigkeit vom Steuerfeld *B* für Hallgenerator FA 24

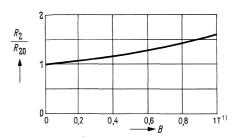
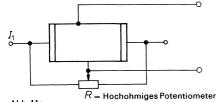



Abb. 10 b: **Hallseitiger Innenwiderstand** in Abhängigkeit vom Steuerfeld *B* für Hallgenerator FA 24

3.3.8. Ohmsche Nullkomponente Ro

Aus fertigungstechnischen Gründen ist der Hallspannung im allgemeinen noch ein kleiner ohmscher Spannungsanteil überlagert. Bei der Induktion B=0 mißt man daher an den Hallelektroden eine Spannung $U_{2R0}=R_0\cdot I_1$.

Den auf die Steuerstromeinheit bezogenen Wert dieser Spannung, also R_0 , bezeichnet man als die ohmsche Nullkomponente. Diese ohmsche Nullspannung kann durch eine äußere Beschaltung (vgl. Abb. 11) kompensiert werden.

Kompensation der ohmschen Nullspannung

Zur ohmschen Nullspannung können Thermospannungen hinzukommen, wenn an den Hallelektroden eine Temperaturdifferenz auftritt, die z. B. durch unsymmetrische thermische Belastung verursacht wird. In den Datenblättern wird jedoch ausschließlich die ohmsche Nullspannung angegeben.

3.3.9. Induktive Nullkomponente A2

Die Zuführungsdrähte zu den Hallelektroden bilden eine Schleife, deren Fläche A selbst bei sorgfältigster Anordnung der Drähte niemals ganz auf Null gebracht werden kann.

Bei zeitlich veränderlicher Induktion entsteht bereits beim Steuerstrom $I_1 = 0$ eine Induktionsspannung u_{10} zwischen den Hallspannungsanschlüssen,

$$u_{10} = A_2 \cdot \frac{\mathrm{d}B}{\mathrm{d}t}$$

Die Größe A_2 heißt induktive Nullkomponente und wird in cm² angegeben. Die Induktionsspannung U_{10} ist nach der Formel außer von A_2 abhängig von der zeitlichen Änderung der Induktion, also von der Frequenz und der Amplitude der Induktion. Für einen Hallgenerator FA 24 mit $A_2 \approx 0.05$ cm² beträgt u_{10} bei 50 Hz und 1 T¹) etwa 500 μ V.

3.3.10. Temperaturverhalten

Die Temperaturabhängigkeit eines Hallgenerators hat zwei Ursachen, nämlich die Temperaturabhängigkeit der Hallkonstante, und damit der Leerlaufhallspannung, mit dem Temperaturkoeffizienten β und die Temperaturabhängigkeit des spezifischen Widerstandes, d. h. des hallseitigen Innenwiderstandes, mit dem Temperaturkoeffizienten α .

Die mittleren Temperaturkoeffizienten α und β sind in den Datenblättern meist für den Bereich von 0 bis 100° C angegeben.

Im Leerlauf ist β , bei Belastung sind α und β wirksam.

Bei Hallgeneratoren aus InSb läßt sich in einfacher Weise die Temperaturabhängigkeit der Hallspannung auf einen Wert von rund 0,2 %/° C dadurch reduzieren, daß nicht der Steuerstrom, sondern die Steuerspannung konstant gehalten wird. Die mit zunehmender Temperatur sinkende Hallkonstante wird dann weitgehend durch den gleichzeitig fallenden steuerseitigen Innenwiderstand und den damit verbundenen Anstieg des Steuerstromes kompensiert.

Definition von α und β in %/° C:

$$\alpha = \frac{100}{R(T_0)} \cdot \frac{\Delta R}{\Delta T}; \quad \beta = \frac{100}{U_{20}(T_0)} \cdot \frac{\Delta U_{20}}{\Delta T}.$$

3.3.11. Maximal zulässiger Steuerstrom I_{1M}

Der Maximalwert des für einen Hallgenerator zulässigen Steuerstromes ist sehr stark von der jeweiligen Betriebs- und Einbauart abhängig, d. h. von den Kühlungsverhältnissen und von der Umgebungstemperatur. Im Datenblatt ist der maximal zulässige Steuerstrom I_{1M} für den Betrieb des Hallgenerators in ruhender Luft angegeben.

Ein Überschreiten dieses Wertes ohne ausreichende Wärmeableitung kann zu Überhitzung und damit zur Zerstörung des Hallgenerators führen.

3.3.12. Wärmeleitwert Gth zwischen Halbleiterschicht und Außenseite des Mantels

Um den maximal zulässigen Steuerstrom für die jeweiligen Kühlverhältnisse berechnen zu können, ist im Datenblatt der Wärmeleitwert des Hallgenerators zwischen Halbleiterschicht und der Außenseite des Mantels angegeben. Der angegebene Wärmeleitwert bezieht sich auf beidseitige Wärmeabfuhr. Hinweise zur Bestimmung des Wärmeleitwertes siehe 4.3.11.

3.3.13. Höchstzulässige Oberflächentemperatur

Die höchstzulässige Temperatur der Halbleiterschicht eines Hallgenerators beträgt, wenn nicht anders angegeben, 120°C. Damit dieser Wert bei maximal zulässigem Steuerstrom nicht überschritten wird, darf die Oberflächentemperatur des Hallgenerators im allgemeinen 90°C nicht überschreiten.

3.4. Hallgeneratoren und ihre Anwendung

Nach der Auslegung für verschiedene Anwendungsgebiete kann man die Hallgeneratoren einteilen für:

- Messung von Induktionen
- Messung von Tangential- und Axialkomponenten magnetischer Induktion
- Messung bei tiefen Temperaturen
- Kontaktlose Signalgabe

Die Typen innerhalb der Gruppen unterscheiden sich dann noch in ihrer Eignung für den jeweiligen Verwendungszweck und in ihrer Genauigkeit.

Hallgeneratoren für Messung der magnetischen Induktion sind speziell dafür entwickelt. Wird ein hochkonstanter Steuerstrom durch den Hallgenerator geschickt, so ist die Größe der Hallspannung der Stärke der Induktion proportional. Von den Hallgeneratoren wird daher eine hohe Konstanz von Empfindlichkeit und Nullspannung gefordert. Als Halbleitermaterialien kommen InAs und InAsP zum Einsatz, welche eine hohe Temperaturstabilität auf Kosten einer geringeren Empfindlichkeit haben. Die Langzeitkonstanz wird durch eine künstliche Alterung mit laufender Kontrolle der elektrischen Werte gewährleistet. Die Alterung der Empfindlichkeit im Betrieb wurde z. B. beim SBV 579 gemessen. Über 18 Monate ergab sich eine Zunahme der Empfindlichkeit von etwa 1,5 · 10 - 4.

Die Bauformen reichen von relativ großflächigen Präzisionssonden über Sonden mit kleiner empfindlicher Fläche zur punktförmigen Messung sowie universellen Anwendungen zu besonders dünnen Sonden, welche eine Induktionsmessung in engen Luftspalten ermöglichen. Die Messung von Tangential- und Axialkomponenten wird durch Spezialtypen ermöglicht, deren aktive Fläche nur 0,1 mm vom Gehäuserand entfernt ist bzw. die in Bohrungen bis herab zu 1,5 mm Ø eingeführt werden können.

Die Sonden für Tieftemperaturmessung sind durch speziellen Aufbau bis $T=-269^{\circ}$ C (flüssiges Helium) einsetzbar.

Bei den Ferrit-Hallgeneratoren für berührungslose und kontaktlose Signalgabe wird vor allem Wert auf eine hohe Empfindlichkeit gelegt. Dies wird durch eine Konzentration des magnetischen Flusses auf das Hallelement mit Hilfe von flußlenkenden Ferritstegen erreicht.

Da die Anwendung dabei meist digitaler Art ist, ist die Temperaturabhängigkeit der Empfindlichkeit von geringerer Bedeutung als eine hohe Signalamplitude.

3.4.1. Messung der magnetischen Induktion B

Für die Ausmessung der Stärke magnetischer Induktion wird der Hallgenerator mit dem passenden Linearisierungswiderstand abgeschlossen und aus einer genauen Konstantstrom-

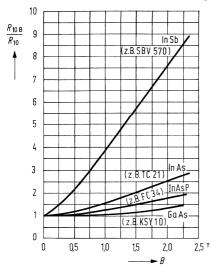


Abb. 12: **Relative Erhöhung** des Steuerwiderstands R_{10} von Hallgeneratoren in Abhängigkeit von der magnetischen Induktion

quelle gespeist. Eine Speisung aus einer Konstantspannungsquelle mit Vorwiderstand ist nicht brauchbar, da bei höheren Induktionen der steuerseitige Innenwiderstand zunimmt und dadurch der Steuerstrom sinkt. Abb. 12 zeigt die Widerstandszunahme im Magnetfeld von 4 Hallgeneratoren aus verschiedenen Halbleitermaterialien.

Ein weiterer Punkt ist besonders bei kleinen Hallspannungen zu beachten: Die Verbindung der Hallspannungsanschlüsse mit dem Halbleitermaterial erfolgt über 2 Lötstellen, deren Thermospannungen sich im Normalfall aufheben. Wird nun der Hallgenerator einer einseitigen Erwärmung ausgesetzt, so stimmen die Thermospannungen nicht länger überein und können zu beträchtlichen Meßfehlern führen.

3.4.2. Feldregelung

Die Regelung und Konstanthaltung von Magnetfeldern kann so erfolgen, daß die Ausgangsspannung eines im Feld angeordneten Hallgenerators zur Regelung des Spulenstroms verwendet wird. Der Hallgenerator wird dabei vorteilhaft im Luftspalt auf einem Polschuh unter einer nicht magnetischen Abdeckung montiert, wobei er immer frei von mechanischen Spannungen sein muß. Die Regelschleife muß mit einem RC-Glied am Regelverstärker bedämpft werden, um die in diesem Fall immer vorhandene Schwingneigung zu beseitigen (vgl. Abb. 13).

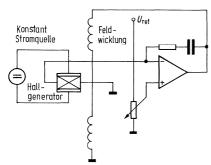


Abb. 13: Prinzipschaltung einer Feldregelung

3.4.3. Potentialfreie Strommessung

Die Verwendung von Hallgeneratoren in einem Weicheisenjoch gestattet die Messung von Gleichströmen bei völliger Potentialtrennung zwischen den Stromkreisen.

Die einfachste Methode besteht darin, den zu messenden Strom durch die Wicklung eines Weicheisenjochs fließen zu lassen und die Induktion im Luftspalt zu messen. Für die magnetische Flußdichte im Luftspalt eines Jochs entsprechend Abb. 14 gilt (vgl. Abb. 1):

h Windung

- $B = \mu_0 \cdot \frac{n \cdot I}{\delta + \frac{I_{\text{Fe}}}{\mu}} \quad \text{(in Tesla)}.$
- μ_0 magnetische Feldkonstante 1,256 · 10 $^{-6}$ Vs/Am
- n Windungszahl

- I zu messender Strom
- δ Luftspalt
- IFe Länge des Eisenwegs
- μ Permeabilität des Jochs

Im Normalfall kann man in der Formel den Beitrag des Eisens $rac{\mathit{l_{F_e}}}{\mu}$ gegenüber dem Luftspalt δ

vernachlässigen (etwa wenn $\frac{I_{\rm Fe}}{\mu}$ < 100 \cdot δ) und erhält:

$$B = \mu_0 \frac{n \cdot I}{\delta} \quad \text{(in Tesla)}^1\text{)}. \quad \begin{array}{l} I \text{ in A} \\ \delta \text{ in m} \\ B \text{ in Tesla} \end{array}$$

Die Hallspannung des im Luftspalt angeordneten Hallgenerators wird nach der Formel errechnet

$$U_{H} = K_{B0} \cdot I_{1n} \cdot B$$
 (in Volt).

K_{B0} Leerlaufempfindlichkeit (in V/AT)

In Nennsteuerstrom (in A)

Bei dieser Art von Messung ist gegebenenfalls die magnetische Sättigung des Weicheisenjochs zu berücksichtigen.

Größere Genauigkeiten lassen sich erzielen, wenn man den Hallgenerator nur als Detektor für verschwindende Induktion im Luftspalt benutzt und durch einen geschlossenen Regelkreis über eine zweite Wicklung des Jochs den Luftspalt feldfrei hält (Abb. 15).

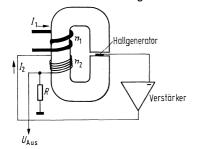


Abb. 15: Genaue Strommessung mit Gegenkopplung

Für die Ströme I_1 und I_2 gilt:

$$I_1 \cdot n_1 = I_2 \cdot n_2 \rightarrow I_2 = \frac{n_1}{n_2} \cdot I_1$$

und
$$U_{\text{aus}} = R \cdot I_2 = R \cdot \frac{n_1}{n_2} \cdot I_1$$
.

Als Hallgenerator verwendet man vorteilhaft einen Ferrithallgenerator, welcher minimale Luftspalte ermöglicht. Allerdings sind gegebenenfalls die Remanenzeigenschaften des Ferrits zu berücksichtigen. Bei großen Änderungsgeschwindigkeiten des zu messenden Stroms kann eine niederohmige Kurzschlußwindung in Form eines Blechstreifens um das Joch erforderlich sein, um die Anstiegsgeschwindigkeit der Induktion geringer zu machen als die Geschwindigkeit der Regelschleife. Dadurch bleibt die Induktion im Luftspalt immer verschwindend klein, und die Remanenz des Ferrits kann nicht stören.

3.4.4. Strommessung an Leitungen mittels Magnetfeldstärke an der Oberfläche

Bei genügender Stromdichte in einer Leitung ist die Messung der Stromstärke durch Bestimmung des Magnetfeldes an der Oberfläche möglich. Da hierbei kein Eisenjoch um den Leiter

^{1) 1} Tesla = 104 Gauß

gelegt wird, kann keine Sättigung auftreten, und die Ausgangsspannung des Hallgenerators folgt auch sehr schnellen Stromänderungen.

Für die Messung wird ein Hallgenerator KSY 10 bzw. TC 21 dicht an die Leiteroberfläche gebracht, um die Tangentialkomponente der Induktion zu messen, die streng proportional dem Strom durch den Leiter ist. Am günstigsten ist dabei die Anordnung des Hallgenerators direkt an der Leiteroberfläche, wo das Feld am stärksten ist (Abb. 16). Die magnetische Induktion an dieser Stelle wird durch die Beziehung bestimmt:

$$B = \mu_0 \cdot \frac{I}{2 \cdot \pi \cdot d}.$$

B (in Tesla)

I Strom im Leiter (in A)

R Radius des Leiters (in m)

d Abstand des Hallgenerators von der Mitte des Leiters (in m) $\mu_0 = 1.256 \cdot 10^{-6}$ magnetische Feldkonstante (in Vs/Am)

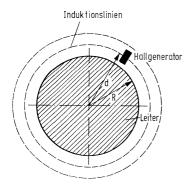


Abb. 16: Strommessung über das Oberflächenfeld

3.4.5. Temperaturkompensation von InAs-Hallgeneratoren bei geringer Aussteuerung

Eine Strommessung über die Stärke des Oberflächenfeldes wird normalerweise nur bei sehr hohen Strömen durchgeführt. Obwohl Hallgeneratoren aus InAs nur eine geringe Temperaturabhängigkeit der Hallspannung von rund -0.1~%°C aufweisen, kann die mit der Stromstärke schwankende Temperatur zu Meßfehlern führen. Da der Innenwiderstand des Hallgenerators mit wachsender Temperatur zunimmt, ist eine Temperaturkompensation durch Beschaltung mit Widerständen nicht möglich.

Für diesen Einsatz von Hallgeneratoren wurde eine Schaltung zur Temperaturkompensation entwickelt, welche die temperaturabhängige Abnahme der Empfindlichkeit durch eine Erhöhung des Steuerstroms ausgleicht (Abb. 17). Die Temperatur wird über die Erhöhung des steuerseitigen Innenwiderstands gemessen, wodurch die Kompensation absoluten thermischen Gleichlauf hat. Andererseits wird jedoch dadurch der Einsatzbereich der Schaltung auf kleine Induktionen bis 50 mT beschränkt, welche noch keine nennenswerte Erhöhung des steuerseitigen Innenwiderstands bewirken. Die Schaltung wurde so ausgelegt, daß für einen Zweipunktabgleich nur je eine Einstellung bei zwei verschiedenen Temperaturen erforderlich ist.

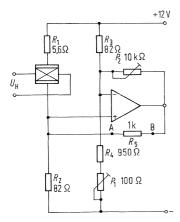


Abb. 17:

Beispiel einer Temperaturkompensation für InAs-Hallgenerator (dimensioniert für TC 21)

Abgleichvorgang: $(T_1 < T_2)$

- 1. Voltmeter am Punkt A und B anschließen.
- 2. Potentiometer P2 auf größtmöglichen Widerstand stellen.
- 3. Mit Potentiometer P₁ Spannung am Voltmeter auf 0 V einstellen.
- 4. Bei genau bekannter Induktion Ausgangssignal messen und notieren. Alle bisherigen Vorgänge erfolgen bei T_1 (Raumtemperatur).
- 5. Sonde auf T_2 erwärmen und bei der gleichen Induktion wie bei 4 mit P_2 das gleiche Ausgangssignal einstellen wie bei T_1 .

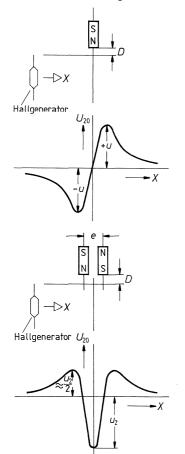
Mit der Wahl der beiden Abgleichtemperaturen wird der Kompensationsbereich festgelegt.

Die Verstärkerschaltung stellt einen negativen Widerstand dar, durch den bei sinkender Spannung ein wachsender Steuerstrom fließt. Die Schaltung arbeitet so, daß die von der Widerstandserhöhung herrührende Spannungszunahme am Hallgenerator verstärkt wird. Diese Spannung läßt durch den 1-k Ω -Widerstand zwischen Punkt A und B einen zusätzlichen Strom durch den Hallgenerator fließen, der die Kompensation bewirkt. Durch die Auslegung der Schaltung ist die Einstellung einfach: Bei der tiefen Temperatur wird in einem genau bekannten Magnetfeld mit Potentiometer P $_1$ der Nullpunkt der Verstärkerschaltung so eingestellt, daß der Widerstand zwischen A und B stromlos ist. Veränderungen am Potentiometer P $_2$ üben jetzt keinerlei Einfluß auf die Ausgangsspannung aus.

Nach Erreichen der hohen Temperatur wird bei derselben Induktion mit P_2 exakt dieselbe Ausgangsspannung eingestellt, die bei der tiefen Temperatur gemessen wurde, wobei P_1 nicht verändert werden darf.

Damit ist der Hallgenerator für die beiden Abgleichtemperaturen exakt temperaturkompensiert. Große oder kleine Temperaturbereiche werden durch entsprechende Wahl der Abgleichpunkte erfaßt.

3.4.6. Anwendung von Signalhallgeneratoren


Signalhallgeneratoren werden in Steuerungen aller Art als kontaktlose Signalgeber eingesetzt. Da die Signalspannung unabhängig von der Bewegungsgeschwindigkeit ist, lassen sich im Gegensatz zu induktiven Systemen Signale auch bei geringen Geschwindigkeiten bis zum Stillstand erfassen. Am häufigsten wird dies bei der kontaktlosen Kommutierung von Gleichstrommotoren genützt. Hier werden die Hallgeneratoren direkt von dem permanentmagnetischen Läufer angesteuert. Die Ansteuerung kann auch mit kleinen Stiftmagneten

oder durch magnetisierte Datenträger erfolgen. Da bei zweckmäßiger Anordnung nur die Polarität der Hallspannung bzw. der Nulldurchgang ausgewertet wird, wird für diese Hallgeneratoren InSb als empfindlichstes Material eingesetzt, dessen starke Temperaturabhängigkeit bei dieser Anwendung nicht stört. Die nachfolgenden Abbildungen zeigen einige Anwendungsmöglichkeiten der Hallgeneratoren RHY 15 und KSY 10.

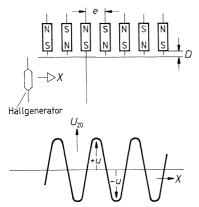
3.4.7. Verlauf der Hallspannungen von Hallgeneratoren beim Vorbeibewegen an verschiedenen Magnetanordnungen

Anhand der in den graphischen Darstellungen aufgetragenen Parameter kann für alle möglichen Geometrien die Höhe des Ausgangssignals bestimmt werden. Alle Angaben werden für drei verschiedene Magnetgrößen gemacht. Sie gelten bei 25°C Umgebungstemperatur.

3.4.7.1. Ansteuerung mit Einzelmagneten

Die Höhe der Scheitelspannung *U* hängt ab vom Abstand *D* des Magneten von der Stirnfläche des Hallgenerators und der Größe des Magneten.

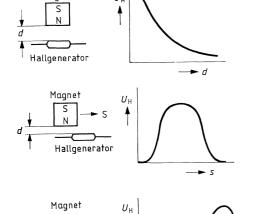
Abb. 18:
Ansteuerung mit einem Einzelmagneten


3.4.7.2. Ansteuerung mit Magnetpaar

Bei Ansteuerung mit zwei parallelen Magneten treten zwei gleichhohe Maxima und ein doppelt so hohes Minimum auf.

Abb. 18 a: Ansteuerung mit Magnetpaar

Magnet


3.4.7.3. Ansteuerung mit enger Magnetreihe

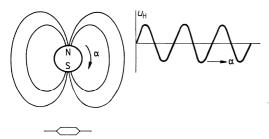
Bei Ansteuerung mit einer Reihe von Magneten mit geringen Abständen hat das Ausgangssignal des Hallgenerators annähernd sinusförmigen Verlauf.

Abb. 18 b

3.4.7.4. Ansteuerung von Hallgeneratoren durch Magnete oder Eisenteile in verschiedenen Anordnungen

Hallgenerator

Ein Permanentmagnet erzeugt im Hallgenerator eine Hallspannung in Abhängigkeit vom Abstand *d* zwischen Hallgenerator und Magnet


Abb. 19

Ein unter konstantem Abstand d zum Hallgenerator vorbeigeführter Magnet mit senkrechter Magnetisierung verursacht einen Hallspannungsverlauf mit ausgeprägtem Maximum.

Abb. 20

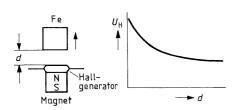

Ein unter konstantem Abstand *d* zum Hallgenerator vorbeigeführter Magnet mit waagerechter Magnetisierung verursacht einen sinusförmigen Hallspannungsverlauf mit linearem Nulldurchgang.

Abb. 21

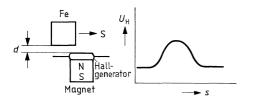

Ein unter konstantem Abstand zum Hallgenerator rotierender Magnet verursacht einen sinusförmigen Hallspannungsverlauf und eignet sich zur Drehwinkelerfassung.

Abb. 22

Ein Eisenteil konzentriert den Streufluß des Magneten, auf den der Hallgenerator montiert ist. Mit zunehmendem Abstand d wird dieser Einfluß geringer und führt zu einer Abnahme der Hallspannung.

Abb. 23

Ein unter konstantem Abstand d über dem auf einen Dauermagneten montierten Hallgenerator vorbeigeführtes Eisenteil verursacht einen Hallspannungsverlauf mit ausgeprägtem Maximum.

Abb. 24

Ein unter konstantem Abstand d über dem auf einen Permanentmagneten montierten Hallgenerator vorbeigeführtes Zahnrad (magn. leitend) verursacht bei Zahnposition über dem Hallgenerator eine Konzentration des Streuflusses. Bei Zahnlücke über dem Hallgenerator ist im Hallgenerator nur der Streufluß des Magneten wirksam. Die Frequenz der sinusförmigen Nullspannung ist somit proportional zur Drehzahl, wobei die Amplitude frequenzunabhängig ist.

Abb. 25

3.4.8. Abtastung von magnetisierbaren Folien

Für Zielsteuerungen, Sortieranlagen usw. bietet sich die interessante Möglichkeit, eine magnetisierbare Folie (Magnet-PVC) mit einem Elektromagneten zu "beschriften" und diese Information bei den Weichen und Zielstationen der Anlage mit Hallgeneratoren abzufragen. Die Magnetfolie kann dabei mit der Fördereinrichtung mitlaufen oder auf einer synchron mit dem Umlauf der Anlage rotierenden Trommel aufgebracht sein.

Als Speicherschicht eignen sich Magnetgummi und Magnet-PVC, aber auch hartmagnetische Legierungen.

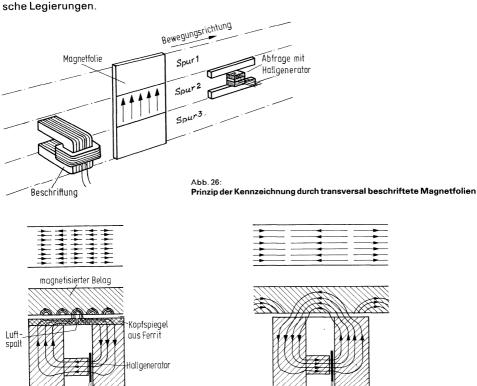


Abb. 26 a: Flußverlauf bei Abfrage von magnetisierten Belägen mit Ferrithallgenerator RHY 20.

11 Anschlußdrähte

Ferrit

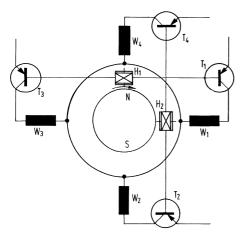

Keramik

Abb. 26 b: Flußverlauf bei Abfrage von magnetisierten Belägen mit Ferrithallgenerator RHY 15.

3.4.9. Kontaktlose Kommutierung von Gleichstrommotoren mit Hallgeneratoren

Hallgeneratoren werden eingesetzt in Gleichstrommotoren mit feststehender Wicklung und einem Permanentmagnetläufer. Der Hallgenerator fragt die Stellung des Läufers zu der Wicklung ab und steuert über einen Transistor die Wicklungen. Es wird ein weitergeschaltetes Drehfeld in den feststehenden Wicklungen erzeugt.

Abb. 27 zeigt das Prinzip des kollektorlosen Motors mit Hallgenerator.

Vier Wicklungen W₁–W₄ werden von zwei um 90° versetzten Hallgeneratoren über Transistorstufen erregt. Die Hallgeneratoren werden vom Feld des umlaufenden Dauermagnetläufers angesteuert.

Zusätzlich besteht die Möglichkeit, die Drehzahl über die induzierte Spannung zu regeln.

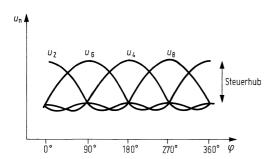
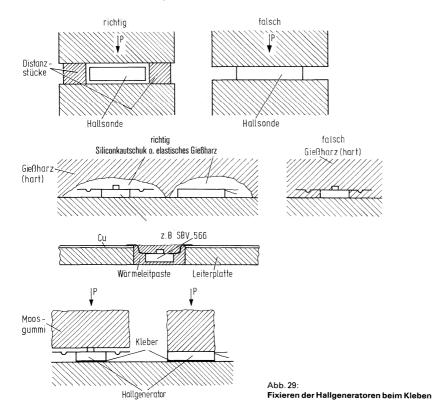
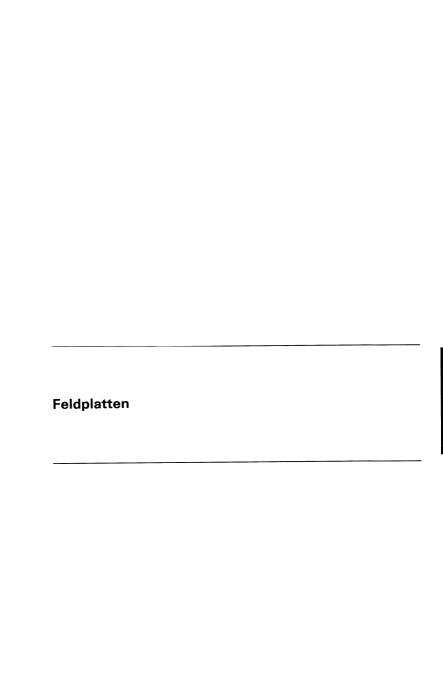


Abb. 28: Steuerspannungen der vier Transistoren in Abhängigkeit vom Drehwinkel

In Abb. 28 ist der Verlauf der Steuerspannungen der vier durch die Hallgeneratoren angesteuerten Transistoren über dem Drehwinkel dargestellt.


3.5. Einbauhinweise für Hallgeneratoren (Tabelle 4)

	Zulässige, über die ganze Fläche gleichmäßig verteilte Druck- beanspruchung senkrecht zur Halbleiterebene in kp/cm ²	Zulässige Zugbean- spruchung senkrecht zur Halbleiterebene in kp/cm ²	Einbauhin- weise (siehe unten)
EA 218 FA 24 FC 32 bis 34 SBV 579 SBV 599 TC 21	0 0,1 0,1 0 0,1 0,1 0,3	0 0,1 0,1 0 0,1 0,3	1,3,7 1,3 1 1,2,7 -
RHY 10 RHY 11 SBV 552	0 0 0,2	0 0 0,2	- -
RHY 15 RHY 20	3 3	0 0	2, 4, 6 2, 4, 6
RHY17 RHY18 RHY18-S1	0 0 0	0 0 0	1,7,9 - 9
FA 22 e RHY 19 SBV 525	0 0 0	0 0 0	8 7,8 1,7
SV110 SV130 SV200 SV210 SV230 S	0 0 0 0	0 0 0 0	1,2,7 1,2,7 1,2,7 1,2,7 1,2,7
SBV 566 SBV 570	0	0 0	2, 4, 6 1, 2, 6
RMY10 EI38 SBV536 KSY10	- - 3 1,0	- - -	4 5 4 6


Die Ziffern in der Spalte "Einbauhinweise" bedeuten:

- 1 = Die Ebene der Halbleiterschicht darf nicht auf Biegung beansprucht werden.
- 2 = Unterseite (keramische Trägerplatte mit elektrischem System) kann mit beliebigen Materialien durch dünne Klebeschicht verbunden werden. Die übrigen Seiten nicht ohne elastische Pufferschicht (Siliconkautschuk¹), elastisches Gießharz, Luft...) in hartes Gießharz einbetten.
- 3= Unterseite (keramische Trägerplatte mit elektrischem System) kann auf Material mit Ausdehnungskoeffizienten von rund 6 · 10^{-6} /° C geklebt werden. Die übrigen Seiten nicht ohne elastische Pufferschicht (Siliconkautschuk¹), elastisches Gießharz, Luft . . .) in hartes Gießharz einbetten.

- 4= Das elektrische System ist gegenüber den Ferritteilen nicht isoliert; Übergangswiderstand beträgt in manchen Fällen nur etwa 1 k Ω . Spannungspotentiale > 15 V zwischen Ferritmantel und Systemelektroden können zur Zerstörung des Hallgenerators führen.
- 5 = Hallgenerator ist nicht gegen den Kern bzw. gegen das Montageblech isoliert. Spannungspotentiale > 15 V zwischen dem Montageblech und den Systemelektroden können zur Zerstörung des Hallgenerators führen. Vorsicht bei der Befestigung auf geerdeten Montageblechen!
- 6 = Beim Anlöten der Anschlüsse Wärmefluß zum Hallgenerator möglichst klein halten.
- 7 = Die Elektroden sind auf der Oberseite nur schutzlackiert, gegen Berührung also nicht hinreichend isoliert; Oberseite beim Einbau isolieren (z. B. mit Isolierfolie abdecken).
- 8 = Das elektrische System darf nicht auf Biegung beansprucht werden.
- 9 = Tieftemperatursonden müssen nach Entnahme aus der Tieftemperaturzone sofort im warmen Luftstrom (z. B. Fön) auf Raumtemperatur gebracht werden, damit keine Eisbildung erfolgt. Eisbildung zerstört die Sonde.

Achtung!
 Nur Siliconkautschuk ohne Lösungsmittel verwenden, Abweichungen sind nur nach Rücksprache mit dem Hersteller zulässig.

4.1. Grundlagen

Feldplatten sind magnetisch steuerbare Widerstände aus InSb/NiSb, deren Beeinflußbarkeit auf dem Gaußeffekt beruht. Die den Halbleiter durchlaufenden Ladungsträger werden durch die Einwirkung eines transversalen Magnetfeldes aufgrund der Lorentzkraft seitlich abgelenkt.

Der Winkel, um den sich die Stromrichtung nach Anlegen eines Magnetfeldes ändert, heißt Hallwinkel δ . Er hängt von der Elektronenbeweglichkeit μ und der magnetischen Induktion B ab:

$$tg\delta = \mu \cdot B$$

Für InSb mit der außerordentlich hohen Elektronenbeweglichkeit von $\mu=7\,\mathrm{m}^2/\mathrm{Vs}$ beträgt der Hallwinkel $\delta\approx80^\circ$ bei $B=1\,\mathrm{T}$. Quer zur Stromrichtung halten im Gegensatz zum Hallgenerator niederohmige, in den InSb-Kristall legierte Nadeln aus NiSb die Gleichverteilung der Ladungsträger über den Querschnitt des Halbleiters aufrecht (Abb. 41 a, b). Die Verlängerung des Weges der Ladungsträger mit zunehmendem Magnetfeld bewirkt eine Erhöhung des Widerstandes der Feldplatte, jedoch ohne Unterscheidung der Polarität der Induktion.

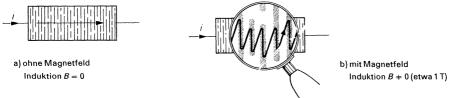


Abb. 41:

Verlauf der Strombahnen in einer rechteckigen Halbleiterplatte aus InSb mit metallisch leitenden Nadeln aus NiSb als Kurzschlußstreifen

Die Widerstandsabhängigkeit von der Induktion ist in Abb. 42 qualitativ dargestellt.

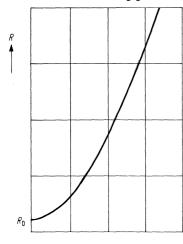


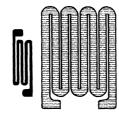
Abb. 42: Abhängigkeit des Feldplattenwiderstandes von der Induktion

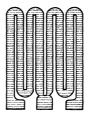
4.2. Aufbau der Feldplatten

4.2.1. Feldplattensystem

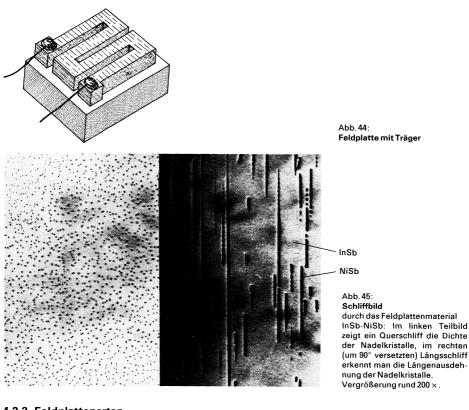
Indiumantimonid-Nickelantimonid InSb-NiSb wird im Schmelzverfahren als Halbleiterbarren hergestellt. Die gewünschte Dotierung wird durch Zugabe von Tellur erzielt. In einem speziellen Faserziehprozeß erstarrt Nickelantimonid in Form von Nadeln im Innern des Indiumantimonids, die über die ganze Länge des Barrens parallel ausgerichtet sind. Abb. 45.

Diese Nadeln bilden im Bauelement die Kurzschlußnadeln, die den geometrieabhängigen Widerstandseffekt bewirken. Die Leitfähigkeit des Materials ist relativ hoch. Für D-Material gilt $\sigma = 200 \, (\Omega \, \mathrm{cm})^{-1}$, L-Material $\sigma = 550 \, (\Omega \, \mathrm{cm})^{-1}$ und N-Material $\sigma = 800 \, (\Omega \, \mathrm{cm})^{-1}$.


Um Widerstände im Bereich 10–500 Ω zu erzeugen, muß der Halbleiter auf möglichst geringen Stromflußquerschnitt gebracht werden. Daneben wird das Bauelement mäanderförmig ausgebildet, um durch möglichst lange Halbleiterstreifen zu hohen Grundwiderständen zu gelangen. Aus physikalischen Gründen (Geometrieeffekt der Widerstandsänderung) darf die Breite der Streifen etwa 80 μ m nicht unterschreiten. Der Grundwiderstand wird somit durch Variation von Länge und Dicke der Mäanderstreifen bestimmt.


Der Barren wird in Scheiben 16×18 mm gesägt und auf Hilfsträger aufgekittet. Durch Schleifen und Ätzpolieren werden rund 25 μm dicke Halbleiterschichten hergestellt.

Die übliche Fototechnik gestattet dann die Formätzung der einzelnen Mäander (Abb. 43). Bezogen auf die mäanderförmige Fläche lassen sich folgende Widerstände verwirklichen: D-Material $100\,\Omega/\text{mm}^2$, L-Material $40\,\Omega/\text{mm}^2$ und N-Material $25\,\Omega/\text{mm}^2$.



Verschiedene Ausführungen formgeätzter Halbleiterschichten

4.2.2. Feldplattenarten

Die formgeätzten Halbleitersysteme werden aus der vielelementigen Halbleiterscheibe herausgelöst und auf isolierte Substrate aufgeklebt. In den meisten Fällen wird auf isolierte Eisensubstrate übertragen (Abb. 44). Als Substratmaterial dieser als E-Typen bezeichneten Feldplatten dient Permenorm 5000 H2 (Sättigungsinduktion 1,5 T, statische Koerzitivfeldstärke 0,04 A/cm, maximale Permeabilität 60 000 bis 80 000).

Daneben kann bevorzugt auf Ferrit-, Keramik- oder Kunststoffsubstrate aufgeklebt werden. Die Halbleitermäander werden mittels Weichlötung von 80 μ m \varnothing CuL-Draht kontaktiert.

Die Halbleiteroberfläche wird zum Schutz gegen mechanische Beschädigung mit einer Lackschicht abgedeckt.

Die Feldplatten werden als Einzel- oder als Doppelfeldplatten hergestellt; letztere eignen sich besonders als Differentialfeldplatten für Brückenschaltungen.

4.2.3. Feldplattendifferentialfühler

Komplette Positionssensoren in der Form von Feldplattendifferentialfühlern erhält man, indem Einzel- oder Doppelfeldplatten in einem permanentmagnetischen Kreis angeordnet und

in geeignete Gehäuse eingebaut werden. Bei den Feldplattenfühlern FP 210/211/212 sind die Feldplatten in einem offenen magnetischen Kreis eingesetzt.

Der Fühler besteht jeweils aus den Teilen Polschuh (1), Feldplattensystem (2), Polblech (3), Magnet (4), Anschlußspinne (5) und Gehäuse (6).

Der Aufbau ist aus Abb. 46 ersichtlich.

Auf einem Eisen-Polschuh (1) mit ausgeprägten Höckern wird das Feldplattensystem (2) auf der isolierten Polschuhfläche aufgeklebt. Das System wird mit Ag-Draht gelötet. Da die Lötstellen über die Systemoberfläche herausragen, werden auf die aktiven Halbleiterflächen Weicheisenpolbleche (3) mit einer Dicke von 0,2 mm aufgeklebt, um die Systeme vor mechanischer Beschädigung zu schützen und die Lötstellenhöhe bis zur Oberfläche der Umhüllung durch ein hochpermeables Material zu überbrücken.

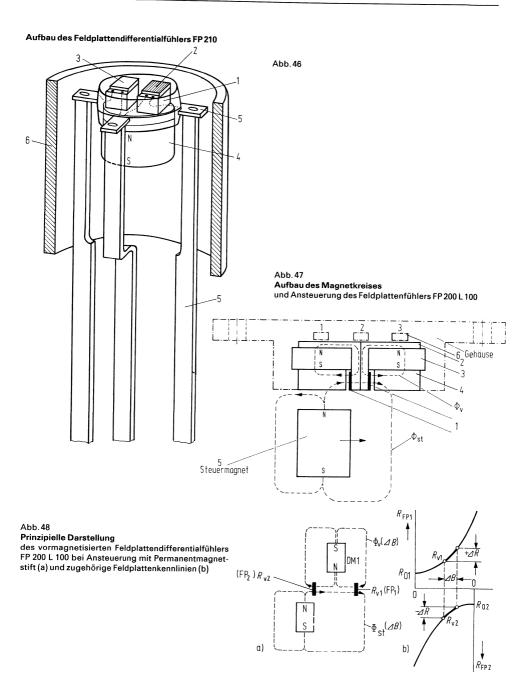
Bei dem Fühler FP 211, der mit einem einhöckrigen Polschuh aufgebaut ist, wurde auf Grund der schmalen aktiven Zonen der aufgeklebten Differentialfeldplatte auf ein Polblech verzichtet. Hier ist das System durch eine etwa 0,25 mm dicke Kunststoffschicht abgedeckt.

Der geschlossene magnetische Kreis mit Feldplatten ist das Grundelement für den Feldplattenfühler FP 200 L 100. Abb. 47 zeigt den Aufbau und die magnetischen Verhältnisse eines FP-200-Fühlers bei Ansteuerung mit einem Stiftmagnet.

Die beiden vormagnetisierten Feldplatteneinheiten sind in der Spinne (6) montiert und werden nach Kontaktierung in einem Aluminiumgehäuse mit Kunststoff umhüllt.

Das Feldplattensystem (1) ist auf einen Schenkel des Systemträgers (2) aufgeklebt. Der Systemträger ist ein Winkelblech aus Permenorm 5000 H2. Der Permanentmagnet (3) aus Strontiumferrit DS 2 erzeugt den vormagnetisierenden Fluß Φ_{V} . Der magnetische Kreis wird über den zweiten Schenkel des Systemträgers sowie das Polblech (4) geschlossen. Die Fläche der Polbleche dient als Fangfläche für den Steuerfluß $\Phi_{\rm st}$ und konzentriert durch ihre Abmaße den Vormagnetisierungsfluß sowie den Steuerfluß auf die kleine Fläche des Feldplattensystems. Die Lötstellen des Systems liegen außerhalb der Polblechauflagefläche. Beide in sich geschlossene Magnetkreise werden mit der Rückseite des Systemträgers zusammenmontiert. Von der Ansteuerseite gesehen, liegen so die beiden Feldplatten direkt nebeneinander. Bei gleicher Vormagnetisierungsrichtung der Permanentmagnete hat die Richtung des Vormagnetisierungsflusses Φ_{V} in den Feldplatten jeweils eine entgegengesetzte Richtung.

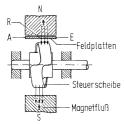
Durch diese Anordnung wird erreicht, daß nicht nur die Feldplatte von ihrem Arbeitspunkt *B*_V nach größeren und kleineren Widerständen ausgesteuert wird, sondern für beide Feldplatten eine Gegentaktaussteuerung erreicht wird.


In der Abb. 48 wird dieser Vorgang prinzipiell dargestellt und anhand der Feldplattenkennlinie erläutert. Die Darstellung hat nur Gültigkeit für konstante Temperatur.

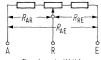
Bewegt sich ein kleiner Steuermagnet (5) mit seiner Stirnfläche an dem Fühler vorbei, so addiert sich am Ort der rechten Feldplatte der Steuerfluß $\Phi_{\rm st}$ zum Vormagnetisierungsfluß $\Phi_{\rm V}$, und der Widerstand der Feldplatte nimmt um ΔR zu. Gleichzeitig überlagert sich der Steuerfluß $\Phi_{\rm st}$, am Ort der linken Feldplatte so, daß der Widerstand der linken Feldplatte um den Betrag ΔR kleiner wird.

Bewegt man den Steuermagneten nach rechts, so dreht sich der Vorgang um.

Durch diese Anordnung wird eine große Signalamplitude bei gleichzeitigem steilen Nulldurchgang erreicht.


Der Nebenschluß für das Steuerfeld ist klein, so daß etwa 50 % des äußeren Steuerflusses $\Phi_{\rm st}$ an der Feldplatte zur Wirkung kommen.

4.2.4. Kontaktlose Potentiometer


Im Luftspalt eines Permanent-Magnetkreises sind zwei Feldplatten aus N-Material mit einem Grundwiderstand von je 35 Ω angeordnet und elektrisch in Reihe geschaltet (Anschlüsse A, R, E). Die Feldplatten stellen rein ohmsche Widerstände dar, deren Wert von dem magnetischen Fluß, der die Feldplatten durchsetzt, abhängt.

Eine Steuerscheibe aus ferromagnetischem Material bildet die Funktion des Schleifers eines herkömmlichen Potentiometers nach: Durch Drehen der Steuerscheibe wird das konstante Magnetfeld von der einen Feldplatte zu der anderen verschoben. Dadurch ändern sich die Teilwiderstände der in Reihe geschalteten Feldplatten R_{AR} und R_{RE} im gegenläufigen Sinn; der Gesamtwiderstand R_{AE} bleibt dabei annähernd gleich.

Prinzipdarstellung des Feldplattenpotentiometers

Abb. 49

Ersatzschaltbild

Der Verlauf der Widerstandskennlinie wird durch die Formgebung der Steuerscheibe bestimmt.

Der kleinste einstellbare Widerstandswert ist durch den Grundwiderstand R_0 einer Feldplatte gegeben. Die beiden Restwiderstände R_{0A} bzw. R_{0E} betragen je etwa 10 bis 15 % des Gesamtwiderstandes R_{AE} .

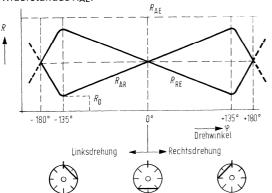


Abb. 50: Widerstandskennlinien mit zugehöriger Stellung der Skalenscheibe

Beim kontaktlosen Potentiometer nach dem zweiten Prinzip wird nicht ein Bereich hohen Feldes über den Feldplatten verschoben, sondern das Feld durch die beiden Feldplatten mit Hilfe eines Permanentmagneten kontinuierlich verändert. Dieser ist exzentrisch auf der Stirnseite einer Steuerachse montiert. Bei 360°-Drehung dieser Achse steuert der Permanentmagnet den Feldplattendifferentialfühler FP 212 L 100 an, so daß ein sinusähnliches Ausgangssignal zustande kommt. Innerhalb eines Winkelbereiches von z. B. 30° ist dieses Ausgangssignal dem Drehwinkel angenähert proportional (Abb. 51).

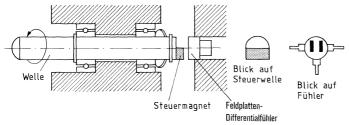


Abb. 51: Lineares Feldplattenpotentiometer FP 310 L 100 mit 30°-Winkelbereich

Entsprechend dem Aufbau als offener magnetischer Kreis ist der Aufwand geringer, was mit einer geringen Einbuße an Linearität und Genauigkeit verbunden ist.

4.3. Begriffe und allgemeine Daten

4.3.1. Grundwiderstand R₀

Der Grundwiderstand R_0 der Feldplatte ist der Widerstand des Halbleitersystems ohne Einwirken eines Magnetfeldes.

Er wird bestimmt durch:

die Leitfähigkeit des InSb-NiSb; man unterscheidet drei Dotierungsgrade:

D-Material: $\sigma = 200 (\Omega \text{ cm})^{-1} \text{ (undotiert)},$

L-Material: $\sigma = 550 (\Omega \text{ cm})^{-1}$

N-Material: $\sigma = 800 \, (\Omega \, \text{cm})^{-1}$;

die Mäanderstreifenbreite, sie beträgt meist etwa 80 um;

die Mäanderdicke; sie beträgt etwa 25 µm;

die Gesamtlänge der aktiven, d. h. induktionsempfindlichen Mäanderstreifen.

Die Toleranz des Grundwiderstandes hängt von der Homogenität des Grundmaterials sowie von der Reproduzierbarkeit der geometrischen Abmessungen des Feldplatten-Systems ab. Der heutige Stand der Systemfertigung läßt es zu, den gewünschten Grundwiderstand R_0 auf \pm 20 % einzuhalten.

4.3.2. Widerstand R_B im Magnetfeld

Als Widerstand R_B einer Feldplatte wird ihr Widerstand unter Einwirkung eines Magnetfeldes bezeichnet. Er wird bestimmt durch:

den Grundwiderstand R_0 , die Größe des senkrecht einwirkenden Magnetfeldes, wobei die Polarität nicht erfaßt wird, und den Dotierungsgrad.

In Abb. 52 ist die relative Widerstandsänderung $R_{\rm B}/R_{\rm 0}$ für die drei Grundmaterialien in Abhängigkeit von der magnetischen Induktion aufgetragen. Bis etwa 0,3 T verlaufen die Kennlinien annähernd quadratisch, zu höheren Feldern hin nähern sie sich asymptotisch einer Geraden. Als Arbeitsunterlage werden die Kurven in Abb. 54 a–c empfohlen. Es ist jedoch darauf zu achten, daß Feldplatten im homogenen Magnetfeld aufgrund des Bündelungseffektes durch den Eisenträger eine etwa 10 % größere Induktion erfahren.

Die Toleranz der relativen Widerstandsabhängigkeit ist vorwiegend abhängig von der Gleichverteilung der ins Material eingebauten Nickelantimonid-Nadeln sowie von der Streuung der Dotierung. Höhere Dotierung des Grundmaterials reduziert die Induktionsabhängigkeit des Feldplattenwiderstandes infolge Abnahme der Elektronenbeweglichkeit μ .

Da nur die Vertikalkomponente des Feldes für die Widerstandserhöhung maßgeblich ist, geht bei Neigung der Feldrichtung die wirksame Komponente des Feldes mit dem Cosinus des Neigungswinkels φ gegen die Vertikale zurück. Abb. 53 a zeigt als Beispiel den Rückgang der Widerstandserhöhung bei B=1 T und 25° C für D-Material.

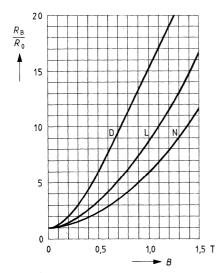


Abb. 52: Widerstandsverhältnis R_B/R_0 in Abhängigkeit von der magnetischen Induktion B bei den verschiedenen Halbleiterdotierungen ($T_U=25^{\circ}\text{C}$) D, L, N

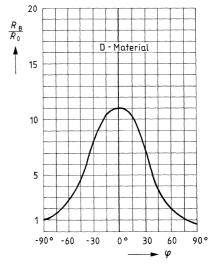


Abb. 53: Abhängigkeit des Widerstandsverhältnisses $R_{\rm B}/R_{\rm 0}$ vom Neigungswinkel des Magnetfeldes für D-Halbleitermaterial

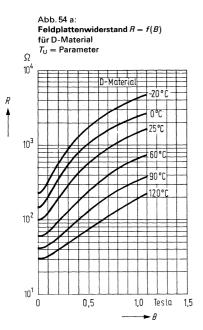
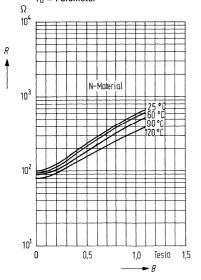
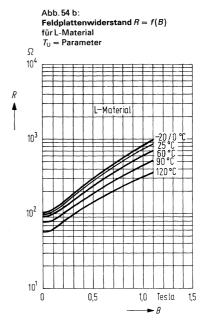
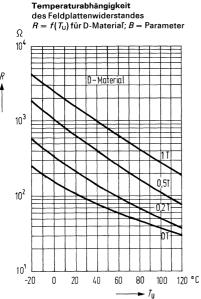




Abb. 54 c: Feldplattenwiderstand R = f(B)für N-Material $T_U = \text{Parameter}$

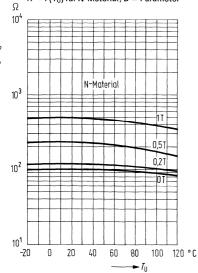
4.3.3. Temperaturabhängigkeit des Feldplattenwiderstandes

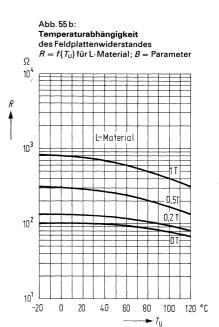
Das undotierte Feldplattenmaterial InSb/NiSb (D-Material) hat einen negativen Temperatur-koeffizienten. Mit zunehmender Dotierung läßt sich dieser bis hin zu positiven Werten beeinflussen. Allerdings ist die Temperaturabhängigkeit bei verschiedenen Temperaturen unterschiedlich hoch.

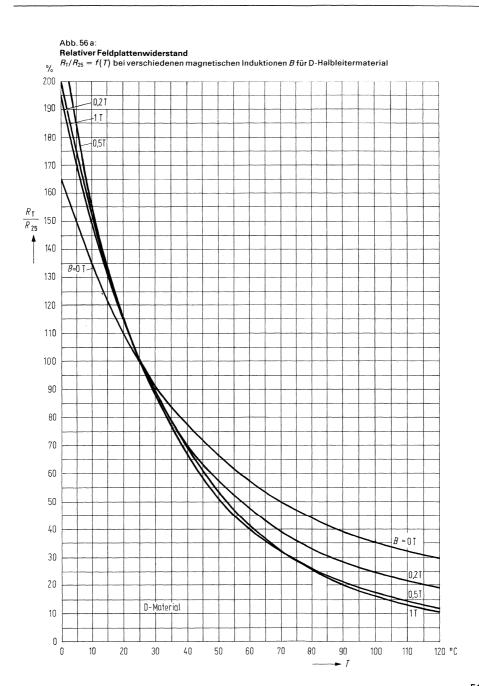
Weiterhin besteht eine Abhängigkeit des Temperaturkoeffizienten von der Größe der auf die Feldplatte einwirkenden magnetischen Induktion.

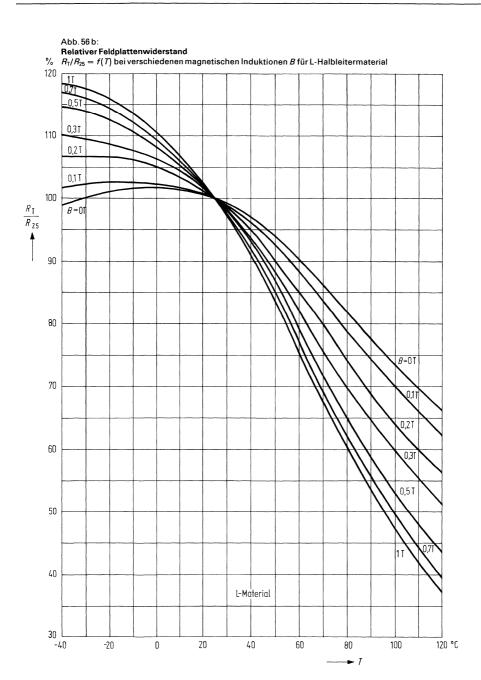

Diese Abhängigkeiten des Feldplattenwiderstandes sind in den Abb. 55 und 56 dargestellt, wobei alternativ die Temperatur bzw. die magnetische Induktion als unabhängige Variable bzw. als Parameter verwendet wurde. Je nach Anwendungsfall können deshalb die Diagramme Abb. 55 oder Abb. 56 benützt werden.

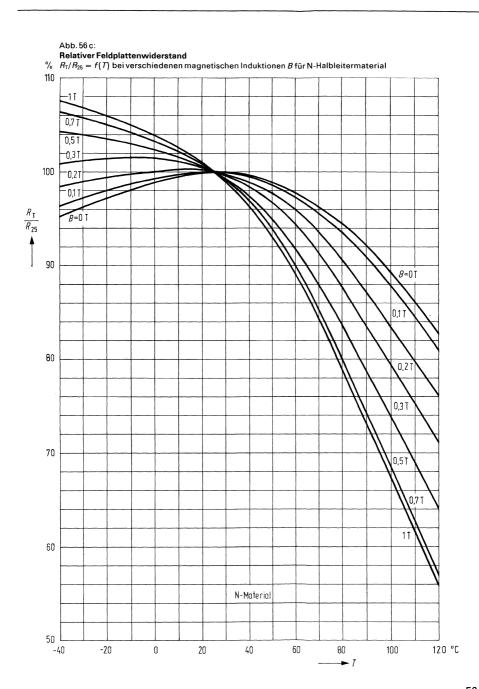
Da die Temperaturabhängigkeit schließlich von der Dotierung beeinflußt wird, ist deren Streuung im Halbleitermaterial wesentliche Ursache für die in Tab. 5 aufgeführten Toleranzbereiche.


Tabelle 5:


	$\frac{R_{75}}{R_{25}}$ (%)	für <i>B</i> = 0 T		$\frac{R_{75}}{R_{25}}$ (%) für $B = 1$ T							
Material	min.	Mittelwert	max.	min.	Mittelwert	max.					
D	45	47	55	28	28	35					
L	74	84	94	53	63	75					
N	90	95	99	76	82	89					


Abb. 55 a:





4.3.4. Rechnerische Darstellung der Feldplatten-Kennlinien

Oft ist es bei der rechnerischen Behandlung von Widerstandsverläufen einfacher, wenn der Verlauf nicht als Reihe von Meßpunkten, sondern als mathematische Funktion vorliegt. Die nachfolgende Tabelle (Tab. 6) zeigt die Koeffizienten der Interpolationspolynome, welche nach der Methode der kleinsten Fehlerquadrate durch die Meßpunkte des Widerstands in Abhängigkeit vom Magnetfeld gelegt wurden. Wegen der Unabhängigkeit des Widerstands vom Vorzeichen des Magnetfelds wurden nur gerade Potenzen verwendet, so daß das Interpolationspolynom folgende Gestalt hat:

$$R(B) = a_0 + a_2 \cdot B^2 + a_4 \cdot B^4 + a_6 \cdot B^6 + a_8 \cdot B^8 + a_{10} \cdot B^{10}.$$

Die Meßwerte wurden in der Rechnung so normiert, daß der Widerstand bei 25°C und 0 Tesla gerade den Wert 100 annimmt. Die Werte geben daher für alle Feldplatten aus demselben Material den Widerstand in % des Wertes bei 25°C und 0 Tesla an. 4.3.4.1.

Tabelle 6: Übersicht der Polynomkoeffizienten (normiert $R_n = 100 \Omega$ bei B = 0 T, $T_U = 25^{\circ}$ C)

 $R_{\rm n}(B) = a_0 + a_2 B^2 + a_4 B^4 + a_6 B^6 + a_8 B^8 + a_{10} B^{10}$

$\overline{}$	B 4		rial
111-	11/1	ате	riai

Grd.	<i>a</i> ₀	a ₂	<i>a</i> ₄	<i>a</i> ₆	<i>a</i> ₈	a ₁₀
- 20	233,400	8804,000	– 12 970,000	16 040,000	- 10 840,000	2923,000
0	155,800	4824,000	-6 546,000	8 288,000	- 5 956,000	1725,000
25	100,000	2445,000	- 2 578,000	2 711,000	- 1 566,000	355,600
60	58,530	929,300	- 790,300	858,300	- 533,700	133,100
90	40,570	425,500	- 301,200	328,800	- 209,000	53,530
120	30,500	216,900	– 139,300	164,500	- 113,000	31,200

L-Material

Grd.	<i>a</i> ₀	<i>a</i> ₂	<i>a</i> ₄	<i>a</i> ₆	<i>a</i> ₈	a ₁₀
-20	100,900	951,100	-632,700	783,700	- 535,200	150,500
0	100,600	907,600	-492,000	462,800	– 219,300	41,340
25	100,000	844,900	- 450,400	439,600	– 233,000	51,050
60	92,620	668,700	- 373,800	434,700	– 294,300	82,280
90	81,160	472,900	- 266,200	333,900	- 237,300	66,920
120	68,580	306,700	- 154,500	185,700	– 129,400	36,440

N-Material

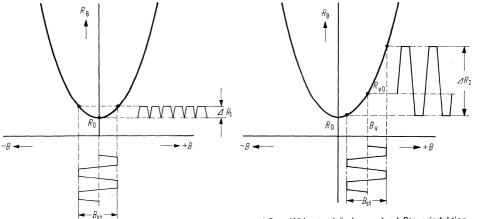
Grd.	<i>a</i> ₀	<i>a</i> ₂	<i>a</i> ₄	<i>a</i> ₆	<i>a</i> ₈	a ₁₀
- 20	98,230	611,900	– 257,800	188,200	- 54,290	1,757
0	99,320	610,600	– 245,100	196,900	– 82,190	14,920
25	100,000	604,600	- 352,900	442,200	– 308,200	87,880
60	97,550	559,400	- 296,800	341,300	- 223,600	60,130
90	91,080	467,900	- 377,200	588,100	– 451,400	129,800
120	82,200	328,600	– 175,700	220,000	– 155,000	44,040

Berechnungsbeispiel:

Es soll der Widerstandswert R einer Feldplatte aus L-Material $[R(+25^{\circ}\text{C};0\text{T})=120\,\Omega]$ bei einer Induktion von $B=0.3\,\text{T}$ und einer Temperatur von $T_U=-25^{\circ}\text{C}$ bestimmt werden.

Normierter Widerstand: R_n (-25° C; 0,3 T)

 $= 100.9 + 951.1 \cdot 0.3^2 - 632.7 \cdot 0.3^4 + 783.7 \cdot 0.3^6 - 535.2 \cdot 0.3^8 + 150.5 \cdot 0.3^{10} = 181.9\%$


Für $R(+25^{\circ}C;0T) = 120 \Omega$ errechnet sich

$$R(-25^{\circ}\text{C}; 0.3\text{T}) = R_n(-25^{\circ}\text{C}; 0.3\text{T}) \cdot R(+25^{\circ}\text{C}; 0\text{T}) = 181.9\% \cdot 120\Omega = 218.3\Omega$$

4.3.5. Vormagnetisierung

Die Widerstandsänderung ΔR_1 ist für kleine Magnetfelder aufgrund der quadratischen Abhängigkeit des Feldplattenwiderstandes von der Induktion sehr gering. Weiterhin wird die Polarität des Feldes nicht erkannt, so daß positive und negative Steuerinduktion $B_{\rm st}$ zur gleichen Widerstandsänderung führen (Abb. 57).

Um höhere Widerstandsänderungen, also einen höheren Signalhub zu erhalten, legt man den Arbeitspunkt auf der Kennlinie nicht in R_0 , sondern in einen Bereich größerer Steilheit. Dies geschieht durch Vormagnetisieren der Feldplatte, z. B. durch Aufbringen der Feldplatte auf einen Permanentmagneten. Der Arbeitspunkt wird so auf den Wert R_{v0} verschoben. Jetzt bewirkt ein Steuerfeld B_{st} eine weit höhere Widerstandsänderung ΔR_2 (Abb. 58).

 B_{et} = Steuerinduktion

 $R_0 = \text{Widerstand bei Induktion } B = 0$

 ΔR_1 = Widerstandsänderung durch Steuerinduktion ohne Vormagnetisierung

Abb 57

Aussteuerung der Feldplatte ohne Vormagnetisierung

 ΔR_2 = Widerstandsänderung durch Steuerinduktion mit Vormagnetisierung

 B_{v} = Vormagnetisierte Induktion R_{v0} = Arbeitspunkt bei

Vormagnetisierung

Abb. 58:

Aussteuerung der Feldplatte mit Vormagnetisierung

4.3.6. Offener magnetischer Kreis

Beim offenen magnetischen Kreis werden die Feldplatten vormagnetisiert, die Widerstandsänderungen selbst aber durch Umlenkung des Vormagnetisierungsfeldes mit Hilfe von bewegten Eisenteilen, nicht von Fremdfeldern, erzeugt (Abb. 59).

Auf einem Dauermagneten (1) wird auf einem Polschuh (2) die Feldplatte (3) aufgeklebt. Die Feldplatte liegt so im Streufluß Φ_V des Vormagnetisierungsmagneten.

Der Feldplattenwiderstand R_B wird so in den steilen Teil der Kennlinie $R_B = f(B)$ (Abb. 59 c) auf den Vormagnetisierungswiderstand R_V angehoben.

Bewegt man ein Eisenteil (4) an der Polschuhfläche vorbei, so wird der hier austretende Streufluß Φ_v verstärkt (Abb. 59 b), und der Widerstand nimmt um ΔR zu (Abb. 59 c).

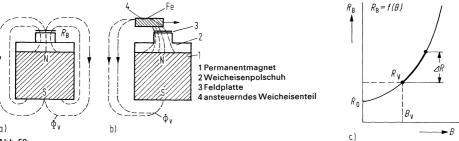


Abb. 59: Prinzip des offenen magnetischen Kreises

4.3.7. Geschlossener magnetischer Kreis

Der geschlossene magnetische Kreis wird im Prinzip in Abb. 60 dargestellt. Ein kleiner Permanentmagnet (1) mit flußlenkenden Weicheisenteilen (2) erhöht den Grundwiderstand R_0 der Feldplatte (3) auf den Vormagnetisierungswiderstand R_v . Die Feldplatte ist damit in einem kleinen geschlossenen Magnetkreis eingebaut.

Bewegt man einen Steuermagneten (4) (Abb. 60 b) an der Feldplatte vorbei, so überlagert sich anfangs der Steuerfluß $\Phi_{\rm st}$ dem Vormagnetisierungsfluß $\Phi_{\rm v}$, und der Feldplattenwiderstand nimmt um ΔR ab (Abb. 60 c).

Beim Weiterbewegen des Steuermagneten entsprechend Abb. 60 b wirkt das Steuerfeld $\Phi_{\rm st}$ anschließend in Richtung des Vormagnetisierungsfeldes, und der Feldplattenwiderstand nimmt in der Folge um ΔR zu.

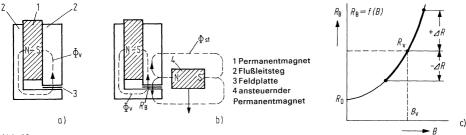


Abb. 60: Prinzip des geschlossenen magnetischen Kreises

4.3.8. Mittensymmetrie M

Die Mittensymmetrie wird bei Differentialfeldplatten als das Verhältnis der Differenz der beiden Einzelwiderstände zu dem größeren Einzelwiderstand in % definiert.

$$M = \frac{R_1 - R_2}{R_1} \cdot 100\% (R_1 > R_2).$$

Im Datenteil wird die Mittensymmetrie jeweils für den nicht angesteuerten Zustand der Differential-Feldplatte angegeben.

4.3.9. Nullspannung $U_{\rm A0}$

Die Differenz der beiden Einzelwiderstände bei Differential-Feldplatten kann auch durch die Nullspannung $U_{\rm A0}$ angegeben werden. In Abb. 61 a ist die Meßschaltung dargestellt. Abb. 62 zeigt den Zusammenhang zwischen Mittensymmetrie und Nullspannung.

Für die Brückenschaltung entsprechend Abb. 61 a gilt:

$$M = \frac{2 \ U_{A0}}{\frac{U_{B}}{2} + \ U_{A0}}$$

$$U_{A0} = \frac{U_{B}}{2} \cdot \frac{R_{1} - R_{2}}{R_{1} + R_{2}}$$

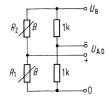


Abb. 61 a: Meßschaltung

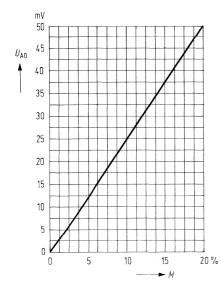


Abb. 62: **Korrelationskurve** $M = f(U_{A0})$ Zusammenhang zwischen U_{A0} und M bei $U_{B} = 1 \text{ V}$

4.3.10. Frequenzverhalten

Die Frequenzunabhängigkeit des Widerstandseffekts wurde bis zu 10 GHz nachgewiesen.

Beim Einsatz von Feldplatten auf leitfähiger Unterlage in Wechselfeldern muß das Auftreten von Wirbelströmen beachtet werden. Für höhere Frequenzen kommen nur Ferrit oder Kunststoff als Trägermaterial in Frage.

Ein weiteres Problem ist die im Mäander induzierte Spannung, welche auch bei bifilarem Aufbau durch eine Restschleife entsteht. Eine Kompensation ist am einfachsten mit 2 gegeneinander geschalteten Feldplatten zu erreichen bzw. durch Formung der Anschlußdrähte.

4.3.11. Wärmeleitwert

Die Kenntnis des genauen Wärmeleitwerts einer eingebauten Feldplatte ist wichtig für den Betrieb bei erhöhten Umgebungstemperaturen oder bei verbesserter Wärmeableitung z. B. durch Montage auf einem Polschuh. Das folgende Verfahren gestattet eine Bestimmung dieses Parameters.

Zuerst wird der Widerstand des elektrisch unbelasteten Fühlers bei der maximalen Betriebstemperatur $T_{\rm max}$ gemessen, wobei dieselben Magnetfelder wie im Betrieb auf die Feldplatte einwirken sollen. Sind die Felder im Betrieb variabel, so wird bei den kleinsten vorkommenden Feldern gemessen.

Die zweite Messung erfolgt bei Raumtemperatur $T_{\rm U}$ am eingebauten Fühler, der denselben Magnetfeldern ausgesetzt sein muß wie bei der ersten Messung. Durch den Fühler wird ein Strom geschickt, der so lange langsam erhöht wird, bis der Widerstand des Fühlers gleich dem bei der ersten Messung ist. Da die Halbleiterschicht jetzt ihre maximale Betriebstemperatur $T_{\rm max}$ hat (gleiches R wie bei der ersten Messung), wird sie durch die zugeführte elektrische Leistung P gerade um $T_{\rm max}-T_{\rm u}$ erwärmt. Der Wärmeleitwert ist daher

$$G_{\text{th}} = \frac{P}{T_{\text{max}} - T_{\text{II}}}$$
 (W/K).

Aus der Formel kann man für jede Umgebungstemperatur die zulässige Verlustleistung errechnen, wobei allerdings die im Datenblatt angegebenen maximalen Verlustleistungen nur in Rücksprache mit dem Hersteller überschritten werden sollten.

Zur zweiten Messung sind noch einige Hinweise angebracht:

 Den Widerstand des Fühlers kann man zwar durch Messung der Spannung und des Stroms bestimmen, doch dürfte die in Abb. 63 angegebene Brückenschaltung die Messung erleichtern.

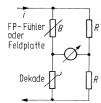


Abb. 63: Meßbrücke zur G_{th}-Bestimmung

An der (genügend belastbaren!) Dekade wird der Widerstand eingestellt, der bei Messung 1 erhalten wurde. Wenn der Widerstand des Fühlers durch die Erwärmung auf den eingestellten Wert abgesunken ist, so ist die Brücke im Gleichgewicht und das Instrument stromlos. Sollen häufig G_{th} -Messungen durchgeführt werden, so kann das Instrument durch einen Operationsverstärker ersetzt werden, welcher den eingeprägten Strom einstellt.

2. Hat der Fühler thermischen Kontakt zu größeren Materialmengen, so kann die thermische Zeitkonstante sehr groß werden. Es muß dabei in jedem Fall der thermische Gleichgewichtszustand abgewartet werden, da sich sonst ein zu großer Wärmeleitwert ergibt. Bei kleinen Fühlern ist jede Zugluft zu vermeiden, zum Beispiel durch ein übergestülptes Glas.

4.3.12. Festlegung der Betriebsspannung

Da bei Feldplattenfühlern die Signalspannung $U_{\rm ASS}$ proportional mit der Betriebsspannung $U_{\rm B}$ steigt, liegt es nahe, hohe Betriebsspannungen zu wählen. Mit Kenntnis des Wärmeleitwertes, der Temperaturverhältnisse sowie des entsprechenden Feldplattenwiderstandes läßt sich leicht der Verlauf der maximal zulässigen Betriebsspannung ermitteln.

Aus der Beziehung

$$G_{\rm th} = \frac{P}{T_{\rm max} - T_{\rm U}} \quad (W/K)$$

ergibt sich

$$G_{\text{th}} \cdot (T_{\text{max}} - T_{\text{U}}) = \frac{U_{\text{B}}^2}{R(T_{\text{max}})}$$

und daraus

$$U_{\rm B} = \sqrt{(T_{\rm max} - T_{\rm U}) \cdot G_{\rm th} \cdot R(T_{\rm max})},$$

wobei T_{max} die maximal zulässige Systemtemperatur,

T_U die Umgebungstemperatur

und $R(T_{max})$ der Feldplattenwiderstand bei T_{max} ist.

Allerdings ist ein Betrieb der Feldplatte bei $U_{\rm Bmax}$, also bei der Spannung, bei welcher das Feldplattensystem die maximal zulässige Temperatur erfährt, zwar vertretbar, nicht aber empfehlenswert, da die hohe Systemtemperatur zu einer überdurchschnittlich schnellen Alterung der eingesetzten Kunststoffe führen kann. Weiterhin führen schon geringe Änderungen des Wärmeleitwerts zu großen Temperaturschwankungen der hoch erhitzten Feldplattensysteme, die sich besonders durch Nullspannungsänderungen beim Einsatz als Differential-Feldplatten negativ auswirken können.

So wurden im Datenteil bei den Fühlern immer eine maximal zulässige und eine empfohlene Betriebsspannung angegeben. Der empfohlenen Betriebsspannung liegt eine bestimmte Systemübertemperatur (meist 20 K) zugrunde, wobei der Absolutwert von \mathcal{T}_{max} nicht überschritten wurde. Bei den Einzelfeldplatten beschränkte man sich auf die Angabe der empfohlenen Betriebsspannung. Hier ist besonders auf den von der Einbauweise abhängigen Wärmeleitwert zu achten.

Soweit sinnvoll, wurde bei den Diagrammen die Bezugstemperatur als Parameter eingeführt. Für $T=T_{\rm U}$ gilt Betrieb frei in Luft, also kleiner Wärmeleitwert. Für $T=T_{\rm G}$ ist die Feldplatte bzw. der Fühler mit gutem Wärmekontakt zu einem Medium mit großer Wärmeleitfähigkeit und Wärmekapazität versehen.

4.3.13. Differential-Feldplatte

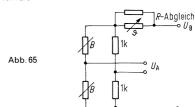
In der Differentialschaltung bleibt bei gleichem Temperaturgang der beiden Einzelsysteme die Spannung ohne Ansteuerung am Mittelabgriff konstant, da beide Einzelwiderstände gleich groß bleiben.

Für die Temperaturabhängigkeit der Signalspannung bei Ansteuerung ist bei Betrieb mit konstanter Spannung das Verhältnis Steilheit zu R_B maßgebend (siehe 4.3.15).

Wie die Abb. 54 zeigt, nimmt sowohl der Widerstand $R_{\rm B}$ wie auch entspr. Abb. 70 die Steilheit $\frac{{\rm d}R}{{\rm d}B}$ mit der Temperatur ab. Beispielsweise ändert sich bei einer Feldplatte aus L-Material bei einer Induktion von $B=0.5\,{\rm T}$ und einer Erwärmung von $+25^{\circ}{\rm C}$ auf $+65^{\circ}{\rm C}$ die Steilheit um etwa $-30\,{\rm \%}$, der Widerstand um etwa $-25\,{\rm \%}$. In der Differentialschaltung geht nur das Verhält-

nis dieser beiden Größen ein, d. h., der Quotient $\frac{dR}{R_B \cdot dB}$ wird um weniger als 7 % kleiner.

4.3.13.1. Differential-Feldplatte in Brückenschaltung


Die Ergänzung einer Differential-Feldplatte zur Vollbrücke läßt es zu, das Ausgangssignal U_A ohne den Anteil $U_{B/2}$ zu erfassen. Bei einer nicht angesteuerten Anordnung beträgt somit das Ausgangssignal 0 Volt.

4.3.14. Temperaturkompensation in Brückenschaltung

Um die verbleibende Temperaturabhängigkeit der Signalspannung zu kompensieren, gibt es folgende Möglichkeiten:

4.3.14.1. Verwendung temperaturabhängiger Widerstände

Die Brücke wird über einen temperaturabhängigen Widerstand an die Betriebsspannung gelegt (Abb. 65). Der Temperaturgang der Brückenspannung U_A kann noch über einen Parallelwiderstand zum Vorwiderstand abgeglichen werden. Dies gelingt jedoch nur für einen kleinen Temperaturbereich.

4.3.14.2. Ausnützung der Temperaturabhängigkeit der Arbeitspunktinduktion Bo

Entsprechend der Abb. 70 nehmen die Empfindlichkeit und damit die Signalspannung $U_{\rm A}$ bei konstanter Betriebsspannung oberhalb 0,3 T mit zunehmender Induktion B ab. Verwendet man bei der Vormagnetisierung einen Permanentmagneten mit negativem Temperaturkoeffizienten, so kann man damit den Temperaturgang der Signalspannung teilweise kompensieren.

Der geringe Temperaturgang von Stahlmagneten bzw. SmCo-Magneten reicht nicht aus. In Frage kommen nur die Oxidmagneten wie z. B. Strontiumferrit DS 1 oder DS 2 mit einem Temperaturkoeffizienten der Induktion von etwa -0.3%/K.

4.3.14.3. Ausnützung der Temperaturabhängigkeit des Innenwiderstandes der Differential-Feldplatte

Eine Kompensation ohne Bauteilmehraufwand ist die für L- und D-Material anwendbare folgende Methode: Man nützt die Temperaturabhängigkeit des Feldplattenwiderstandes und somit des Innenwiderstandes der Differential-Feldplatten direkt zur Kompensation (Abb. 66 a, b).

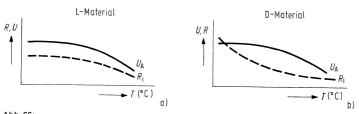
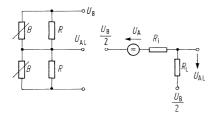



Abb. 66: **Prinzipielle Darstellung des Verlaufs von Ausgangsspannung** U_A und Innenwiderstand der Differentialplatte R_i bei L- und D-Material

Schaltet man zu den Einzelfeldplatten des Spannungsteilers gemäß Abb. 67 je einen Widerstand R parallel, so verringern sie das Leerlaufausgangssignal U_A der Brücke zu U_{AL} .

$$U_{AL} = U_A \cdot \frac{R_L}{R_i + R_L}$$

Abb. 67: Schaltung und Ersatzschaltbild von mit Widerständen belasteter Feldplattenbrücke (Belastung $R_{\rm L}=R/2$)

Aus der Beziehung entsprechend dem Ersatzschaltbild in Abb. 67 geht hervor, daß bei Abnahme von $R_{\rm i}$ der Nenner des Bruchs kleiner wird und dadurch ein größerer Bruchteil von der Leerlaufausgangsspannung $U_{\rm A}$ als $U_{\rm AL}$ erscheint. Da bei steigender Temperatur die Höhe des Ausgangssignals $U_{\rm A}$ und der Innenwiderstand der FP-Brücke gleichermaßen zurückgehen, ist eine Kompensation der Abnahme des Ausgangssignals möglich. Als Nachteile dieser Art der Kompensation sind die Verkleinerung des Ausgangssignals und die Verlustleistung in den Belastungswiderständen zu nennen.

Eine verbesserte Kompensationsschaltung beruht auf demselben Prinzip wie die einfache Methode, vermeidet aber deren Nachteile durch Verwendung eines Operationsverstärkers nach Abb. 68.

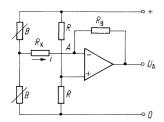


Abb. 68: Schaltung mit verbesserter Temperaturkompensation

Durch die Art der Beschaltung des Operationsverstärkers hat die Schaltung am Punkt A einen Eingangswiderstand von 0 Ohm. Es wird daher nicht die Ausgangsspannung des Feldplatten-Differentialfühlers ausgewertet, sondern der Ausgangsstrom i. Wenn man den Widerstand R_k genau halb so groß dimensioniert wie einen einzelnen Belastungswiderstand der einfachen Schaltung, so "sieht" der Differentialfühler eine gleich große Last wie bei der einfachen Schaltung, und es herrschen dieselben Verhältnisse bezüglich der Kompensation. Im Gegensatz zur einfachen Schaltung kann jedoch der Widerstand R_k beliebig verkleinert oder sogar fortgelassen werden, wobei das Ausgangssignal sogar zunimmt. Mit der Größe des Widerstands R_k kann die Kompensation optimal an die magnetischen Verhältnisse der verwendeten Anordnung und an den Temperaturbereich angepaßt werden. Als Anfangswert für Versuche bei einer neuen Anordnung wähle man R_k gleich dem Innenwiderstand der Differential-Feldplatte.

4.3.15. Arbeitspunkt von vormagnetisierten Differential-Feldplatten

Das Ausgangssignal eines Differentialfühlers wird neben den magnetischen Bedingungen der Ansteuerung auch von der Stärke der Vormagnetisierung B beeinflußt. Betrachtet man einen Spannungsteiler aus 2 Feldplatten nach Abb. 69, gilt bei kleiner Induktionsänderung ΔB :

$$R_2$$
 B_2
 R_4
 B_1
 B_3
 R_3

$$R_{3} = R_{4}$$

$$B_{1} = B + \Delta B$$

$$B_{2} = B - \Delta B$$

$$R_{1} = R + \Delta R = R + \frac{dR}{dB} \cdot \Delta B$$

$$R_{2} = R - \Delta R = R - \frac{dR}{dB} \cdot \Delta B$$

Abb. 69: FP-Spannungsteiler

Die Mittenspannung des angesteuerten Feldplattenspannungsteilers ist

$$U_{\rm R1} = U_{\rm B} \frac{R_1}{R_1 + R_2}$$

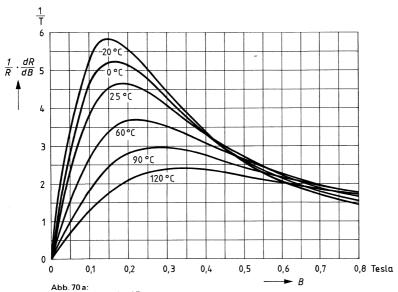
während sie an den Festwiderständen

$$U_{R} = \frac{U_{B}}{2}$$

bleibt.

Daraus folgt:

$$\Delta U = U_{R1} - \frac{U_{B}}{2} = U_{B} \left(\frac{R_{1}}{R_{1} + R_{2}} - \frac{1}{2} \right) = U_{B} \frac{R_{1} - R_{2}}{2(R_{1} + R_{2})} = U_{B} \frac{2 \frac{dR}{dB} \Delta B}{4R}.$$


$$\frac{\Delta U}{U_{\rm B}} = \frac{1}{2R} \cdot \frac{\mathrm{d}R}{\mathrm{d}B} \cdot \Delta B.$$

Die Höhe des Ausgangssignals hängt also von $\frac{1}{R} \cdot \frac{dR}{dB}$, der relativen Änderung des Widerstands, ab.

Für ein möglichst großes Signal ist also ein möglichst steiler Widerstandsanstieg bei kleinem Widerstand im Arbeitspunkt erforderlich. Da mit wachsendem Magnetfeld der Widerstand der Feldplatte zunimmt, während bei großen Feldern der Widerstandsanstieg langsam abflacht, ergibt sich ein Maximum der Empfindlichkeit bei kleinen bis mittleren Feldstärken. Die

Abb. 70 zeigen den Verlauf von $\frac{1}{R} \cdot \frac{dR}{dB}$ für die 3 Materialien. Da die Maxima relativ flach sind,

ist die Größe der Vormagnetisierung nicht kritisch. Wenn man in der Wahl frei ist, sollte man die Vormagnetisierung des Fühlers frei in Luft etwas unter das Maximum legen, da sich durch das ansteuernde Eisenteil eine Flußkonzentration und damit eine Erhöhung der Vormagnetisierung ergibt.

Empfindlichkeit $\frac{1}{R} \cdot \frac{dR}{dB} = f(B)$ für D-Material

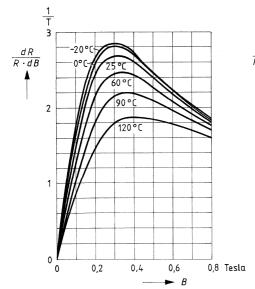
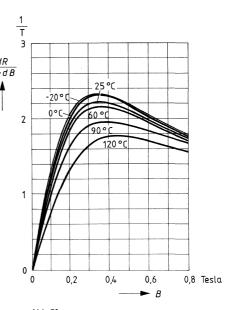



Abb. 70 b: Empfindlichkeit $\frac{1}{R} \cdot \frac{dR}{dB} = f(B)$ für L-Material

4.4. Anwendung von Feldplatten und Feldplattenfühlern

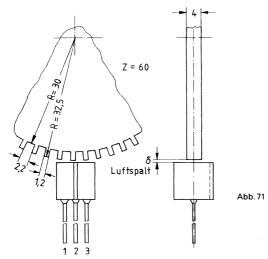
Feldplatten lassen sich als kontakt- und stufenlos steuerbare Widerstände einsetzen. Die Ansteuerung erfolgt entweder mit einem Permanentmagneten oder über einen Elektromagneten, in dessen Luftspalt der Halbleiter liegt.

Bei den Feldplattenfühlern sind der Magnet und flußlenkende Teile zu einer Einheit zusammengefügt, so daß die Ansteuerung mit Eisenteilen oder kleinen Stiftmagneten erfolgen kann. Der Schwerpunkt der Anwendungen liegt bei den Feldplattenfühlern im Bereich der kontaktlosen und berührungslosen Schaltvorgänge, insbesondere als Drehzahlgeber, Positionsgeber sowie Funktionsgeber.

Feldplatten auf Eisensubstrat werden in Verbindung mit einer Folgeelektronik zur kontaktlosen Signalgabe sowie zur potentialfreien Regelung in elektromagnetischen Kreisen eingesetzt.

4.4.1. Drehzahlerfassung mit Feldplatten-Differential-Fühler

Die Feldplattenfühler FP 210 L 100 bzw. FP 212 L 100, FP 210 D 250 bzw. FP 212 D 250 und FP 211 D 155 eignen sich besonders für die Drehzahlmessung rotierender Zahnräder. Interessant ist dabei die Möglichkeit, auch noch bei niedrigsten Drehzahlen fehlerfrei zu messen, da die Höhe der Ausgangsspannung von der Drehzahl unabhängig ist.


Für ein möglichst großes Ausgangssignal sollte das Zahnrad eine Zahnbreite von 1,2 mm und eine Lückenbreite von 2,2 mm aufweisen. Die Zahnhöhe sollte nicht weniger als 1 mm betragen.

Das Ausgangssignal ist annähernd sinusförmig, wobei der Klirrfaktor mit sinkendem Luftspalt anwächst. Die Tabelle enthält die Effektivspannungen von Grund- und Oberwellen für verschiedene Luftspalte und 5 V Speisespannung für das oben empfohlene Zahnrad Abb. 71 bei Abfrage mit FP 210 L 100.

Tabelle 7:

Luftspalt	Grund	lwelle	1. Obe	rwelle	2. Oberwelle				
δ in mm	mV %		mV	%	mV	%			
0,02	540	100 %	50	9,0 %	30	5,6%			
0,2	210	100 %	7	3,3 %	5	2,3%			
0,4	100	100 100%		2,0 %	1	1,0 %			
0,6	50			1,5 %	0,2	0,4 %			

 $\label{lem:vertex} \textbf{Verteilung von Grund- und Oberwellen für FP 210 L 100} \\ \textbf{bei Ansteuerung mit Zahnrad entsprechend Abb. 71} \\$

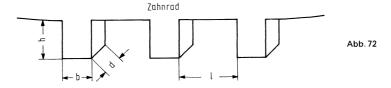
4.4.2. Drehsinnerfassung mit Feldplatten-Differential-Fühler

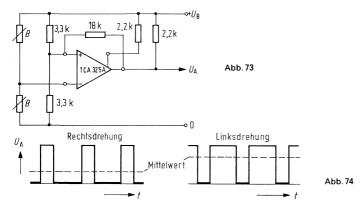
Bei Verwendung eines Feldplatten-Differential-Fühlers, z. B. FP 210 D 250, zur Erfassung der Drehrichtung eines Zahnrades ist ein unsymmetrisches Zahn-Zahnlücke-Verhältnis Voraussetzung. Es werden folgende Abmessungen des Zahnrades empfohlen (Abb. 72).

Zahnhöhe $h: \ge 1$ mm; Zahnbreite b: 2 mm

Zahndicke $d: \ge 3 \,\mathrm{mm}$; Zahnlücke $I: 6 \,\mathrm{mm}$

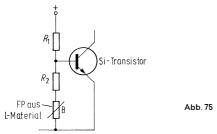
Der Luftspalt zwischen Zahnrad und Fühlerelement soll unter 0,5 mm liegen.


Die Hysterese des Schaltverstärkers wird so bemessen, daß der Ausgangsspannungsbereich des nicht angesteuerten Fühlers voll erfaßt wird:


Die Mittensymmetrie
$$M = \frac{R_1 - R_2}{R_1}$$
 (wobei $R_1 > R_2$) bei der FP 210-/212-Serie beträgt weniger

als 10%, so daß die Ausgangsspannung des nicht angesteuerten Fühlers zwischen 47,4% und 52,6% der Betriebsspannung liegt. Bei einer Speisespannung von 5 V soll daher der Hysteresebereich des Verstärkers von 2,37 bis 2,63 V gehen. Wählt man zur Sicherheit 2,32 und 2,68 V, so ergibt sich die in Abb. 73 skizzierte Schaltung.

Aus der Abfrage des Mittelwertes der Ausgangsspannung der Schaltstufe ergibt sich der Drehsinn des Zahnrades (Abb. 74).

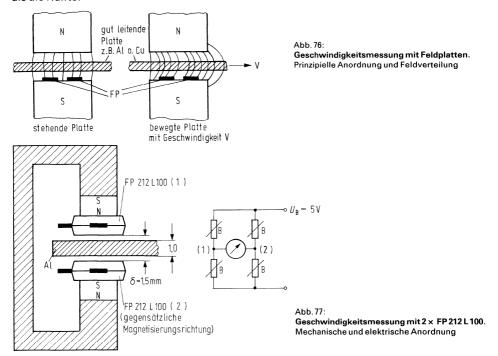

Ein stark unsymmetrisches Zahn-Zahnlücke-Verhältnis ergibt einen großen Unterschied der Mittelwerte der Ausgangsspannung bei Rechts- und Linksdrehung, erniedrigt aber die Folgefrequenz. Das Optimum liegt bei etwa 1:3, wobei die Hälfte der höchstmöglichen Frequenz abgegeben wird und die drehsinnabhängige Spannung bei 25% oder 75% des Ausgangsspannungshubes der Schaltstufe liegt.

4.4.3. Ansteuern von Transistoren mit Feldplatten

Bei der Ansteuerung von Transistoren mit Feldplatten wird die Basis des Transistors an einen Spannungsteiler angeschlossen, in dessen einem Zweig die Feldplatte liegt. Durch Ausnutzung der Temperaturabhängigkeit der B-E-Spannung des Transistors und des Widerstands der Feldplatte kann eine Temperaturkompensation erreicht werden. Dazu legt man zweckmäßig nach Abb. 75 die Feldplatte in den emitterseitigen Zweig des Spannungsteilers für die Basis des Transistors. Da jedoch bei einer Temperaturänderung von +25 auf $+100^{\circ}$ C die Basis-Emitter-Spannung des Transistors auf 80 % absinkt, der Widerstand einer Feldplatte aus L-Material bei einem Fluß von 0,1 T jedoch auf 70 % des Werts bei 25° C, wird in Reihe mit der Feldplatte der Widerstand R_2 gelegt, wodurch eine weitgehende Temperaturkompensation erreicht werden kann.

4.4.4. Berührungslose Geschwindigkeitsmessung von Rotations- und Linearbewegungen/Feldplatten-Wirbelstromtachometer

In der modernen Steuerungstechnik benötigt man für die Steuerung schneller mechanischer Einrichtungen die Geschwindigkeit und Beschleunigung der bewegten Teile als elektrische Signale. Der Einsatz von Feldplatten-Differentialfühlern erlaubt die berührungs- und damit verschleißfreie Messung dieser Größen.


Die Messung erfolgt nach dem Wirbelstromverfahren, bei dem eine im Magnetfeld bewegte, leitfähige Platte durch die fließenden Wirbelströme eine Verlagerung des Feldes bewirkt (Abb. 76). Die Feldverlagerung wird mit einem oder zwei Feldplatten-Differential-Fühlern gemessen und verzögerungsfrei in ein elektrisches Signal umgewandelt, das der Geschwindigkeit proportional ist. Die Beschleunigung läßt sich daraus leicht durch Differentiation bestimmen.

Der skizzierte Aufbau besteht aus zwei Feldplattenfühlern FP 212 L 100, die durch einen Rückschluß zu einem magnetischen Kreis geschlossen sind. Zwischen den Fühlerköpfen bewegt sich eine elektrisch gut leitende Scheibe (Abb. 77).

Die Feldplatten sind zu einer Vollbrücke verschaltet. Bei 5 Volt Betriebsspannung und einer Induktion von etwa 0,5 Tesla im Luftspalt wird eine Empfindlichkeit von rund 16 mV·s/m erreicht. Dies heißt, eine Geschwindigkeit von 1 m/s ergibt 16 mV Ausgangssignal.

Bei einer Alu-Scheibe von 70 mm Durchmesser erhält man demnach bei n=3000 U/min und $U_{\rm R}=5$ V eine Signalspannung von $U_{\rm A}=160$ mV.

Wenn man auf einen der Fühler verzichtet, beträgt die Signalspannung noch etwas weniger als die Hälfte.

4.4.5. Winkelschrittgeber mit Feldplatten-Differential-Fühlern

Die Eigenschaft der Feldplattenfühler, bei langsam bewegtem oder stehendem Zahnrad die volle Signalhöhe abzugeben, erlaubt ihren Einsatz als Winkelschrittgeber. Zu diesem Zweck werden 2 Differentialfühler so an einem Zahnrad angeordnet, daß ihre Ausgangssignale um 90° phasenverschoben sind (siehe Abb. 78). Die beiden sinusförmigen Ausgangssignale werden mit Operationsverstärkern in Rechtecksignale umgeformt und können dann mit der Schaltung nach Abb. 79 für einen inkrementalen Winkelschrittgeber ausgewertet werden.

Die Vorwärts-Rückwärts-Zähler FLJ 241 können in der vorgesehenen Weise in Reihe geschaltet werden, um eine mehrstellige Anzeige zu liefern.

Die Schaltung zählt bei jeder Zahnflanke um 1 weiter, ein 24zähniges Rad liefert also 48 Zählungen pro Umdrehung.

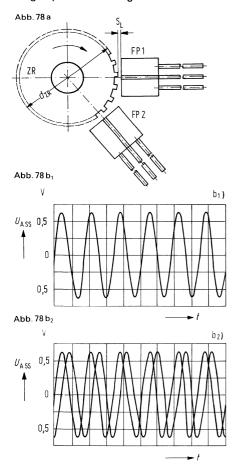


Abb. 78: Feldplatten-Differential-Fühler als Drehzahlmesser, Stellungsgeber, Winkelschrittgeber

- a) Aufbauschema
 FP Feldplatten-Differential-Fühler

 ZR Steuerndes Zahnrad
 (d_{ZR} = 26 mm; 24 Zähne)

 δ Luftspalt 0,2 mm, U₈ = 5 V
 Drehrichtung von ZR
- b) Verlauf der Spannung $U_{\rm A}$ am Feldplatten-Differential-Fühler b₁) Mit einem Feldplatten-Differential-Fühler
 - b₂) Mit zwei Feldplatten-Differential-Fühlern

4.4.6. Stellungsanzeige mit Feldplatten-Differential-Fühlern

In Verbindung mit einer hysteresebehafteten Schaltstufe kann mit einem Feldplatten-Differential-Fühler, z. B. FP 210 D 250, eine Stellungsanzeige aufgebaut werden. Als Ansteuereinheit wird ein Weicheisenblech mit einer Breite von 2 mm benötigt. Der Luftspalt zwischen Fühlerelement und Weicheisen soll etwa 0,2 mm betragen (Abb. 79 a). Bei einer Bewegung des Blechs über den FP-Fühler ergibt sich der in Abb. 79 b skizzierte Verlauf der Ausgangsspannung $U_{\rm A}$.

Bei einer Bewegung des Eisenteils nach rechts erhält man zunächst das Maximum, dann das Minimum der Ausgangsspannung, wenn Anschluß 1 an den Minuspol und Anschluß 3 an den Pluspol der Spannungsquelle angeschlossen sind (Abb. 80).

Für die Auswertung wird eine Schaltstufe verwendet, deren Hysteresebereich etwas größer bemessen ist als der Toleranzbereich der Mittensymmetrie des Feldplattenfühlers. Dadurch verharrt die Schaltstufe im Zustand des letzten Extremwerts beim Vorbeibewegen des Blechs.

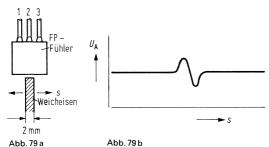


Abb. 79 a und b:

 $Positions anzeige \ von \ Weicheisenteilen \ mit \ Feldplatten-Differential-F\"{u}hlern$

a) geometrische Anordnung,

b) qualitativer Verlauf der Ausgangsspannung UA in Abhängigkeit vom Wegs

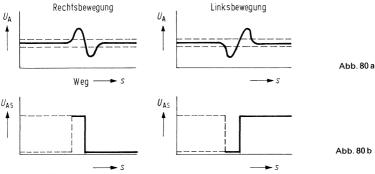
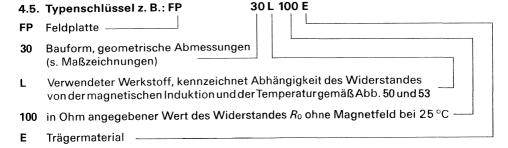
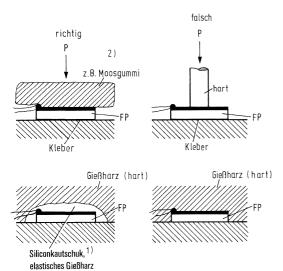



Abb. 80 a und b:

Verlauf der Ausgangsspannung U_A des Feldplatten-Differential-Fühlers (a)

und der Ausgangsspannung $U_{\rm AS}$ der Schaltstufe (b) bei Rechts- und Linksbewegung

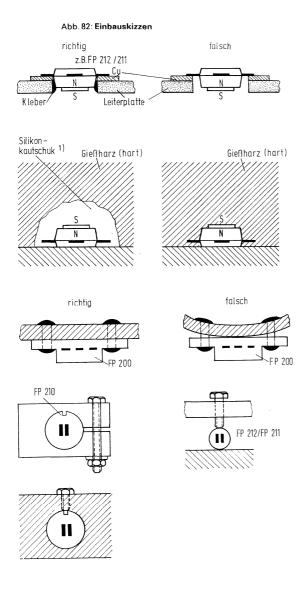
Die Ausgangsspannung der Schaltstufe gibt dadurch stets die Lage des Weicheisenteils relativ zum Fühler an.

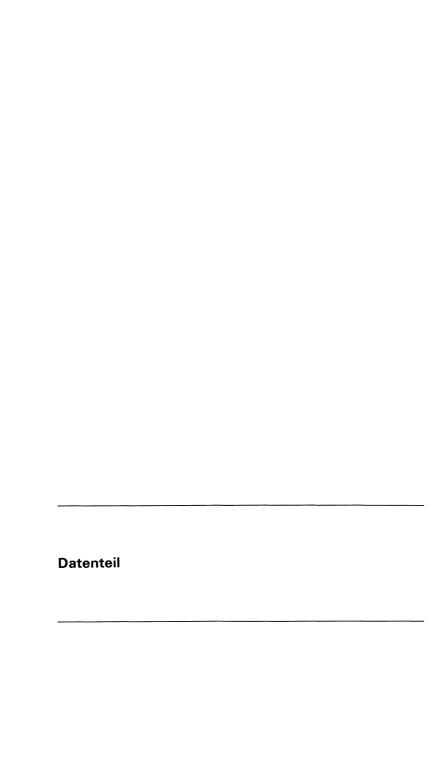

4.6. Einbauhinweise für Feldplatten

Die Feldplatten können mit handelsüblichen Klebern (z. B. Ciba Kleber AY 103 und Härter HY 992) auf jede geschliffene Unterlage geklebt werden. Die Aushärtezeit beträgt etwa 4 Stunden bei 100° C. Auf eine fettfreie Klebefläche ist zu achten.

Ein Vergießen der Feldplatten mit der gleichen Kleber-Härter-Kombination ist ebenfalls möglich, wenn eine elastische Pufferschicht (z. B. Siliconkautschuk¹) oder elastisches Gießharz) die Aushärtekräfte aufnimmt. Dabei müssen die Oberfläche, auf der der Halbleiter sichtbar ist, und die Anschlüsse mit dieser Schutzmasse abgedeckt werden (Abb. 81).

Feldplatten auf Eisenträger werden im Magnetfeld angezogen. Darum können besonders bei magnetischen Wechselfeldern mechanische Beanspruchungen auftreten, falls der "feste" Einbau, wie oben angegeben, unterbleibt.


Abb. 81: Fixieren der Feldplatte beim Kleben


¹⁾ Achtung!

Nur Siliconkautschuk ohne Lösungsmittel verwenden, Abweichungen sind nur nach Rücksprache mit dem Hersteller zulässig.

²⁾ Bei Fixierung der Feldplatte mit Moosgummi soll die Temperatur zum Aushärten des Klebers nicht über 70° C betragen. Nachhärten mit höherer Temperatur ohne Gummi möglich.

Achtung! Nur Siliconkautschuk ohne Lösungsmittel verwenden, Abweichungen sind nur nach Rücksprache mit dem Hersteller zulässig.

Datenteil

5.1. Inhalt geordnet nach Anwendungsgebieten 74 5.2. Magnetfeldhalbleiter 76 5.2.1. Hallgeneratoren-Typenübersicht mit Eckdaten 76 EA 218 77 FA 22e 77 FA 24 79 FC 32 80 FC 33 80 FC 34 80 RHY19 82 SBV 525 82 SBV 579 84 SBV 599 85 TC 21 94 RHY10 95 RHY11 95 RHY18 96 RHY18 96 RHY18 96 RHY18 96 SV200 88 SV210 91 SV230S 91 SV230S 91 SV230S 91 FP17D 500E 100 FP17L 200E 102 FP30 N 60E 108 FP110 L 60 112 FP111 L 100 114 FP30 N 60F 110 FP30 N 60F	5.	Datentei				_																		Seite
5.2.1. Hallgeneratoren-Typenübersicht mit Eckdaten 76 EA 218 77 FA 22e 77 FA 24 79 FC 32 80 FC 33 80 FC 34 80 RHY19 82 SBV525 82 SBV579 84 SBV599 85 TC 21 94 RHY10 95 RHY11 95 RHY18 96 RHY18 96 RHY18 96 SV200 88 SV210 91 SV230S 91 5.2.2. Feldplatten-Typenübersicht mit Eckdaten 99 FP17D 500E 100 FP30 L 100E 102 FP30 N 60E 104 FP30 N 60E 108 FP110 D 155 110 FP110 L 60 112 FP111 L 100 114 FP30 N 60 K 118 FP30 N 60 K 118 FP30 N 60 K 118 FS.3. Position	5.1.	Inhalt georg	inet	nac	ch A	۹nv	ver	ndu	ıng	sg	ebi	ete	n	٠	٠	•	٠	•	٠	٠	٠	•	٠	. 74
EA 218 77 FA 22e 77 FA 24 79 FC 32 80 FC 33 80 FC 34 80 RHY 19 82 SBV 525 82 SBV 579 84 SBV 599 85 TC 21 94 RHY 10 95 RHY 11 95 RHY 18 96 RHY 18 S1 98 SV 200 88 SV 210 91 SV 230 S 91 5.2.2. Feldplatten-Typenübersicht mit Eckdaten 99 FP 17 D 500E 100 FP 30 L 100E 102 FP 30 L 100E 102 FP 30 L 100E 104 FP 11 L 100 114 FP 30 N 60E 108 FP 110 L 60 112 FP 111 L 100 114 FP 30 N 60 K 118	5.2.	Magnetfeld	lhal	blei	ite																			. 76
FA 22e 77 FA 24 79 FC 32 80 FC 33 80 FC 34 80 RHY 19 82 SBV 525 82 SBV 579 84 SBV 599 85 TC 21 94 RHY 10 95 RHY 11 95 RHY 17 96 RHY 18 95 RHY 18 95 RHY 10 86 SV 200 88 SV 110 86 SV 200 88 SV 210 91 SV 230 S 91 FP 17 D 500 E 100 FP 17 L 200 E 102 FP 30 N 60 E 108 FP 110 D 155 110 FP 30 N 60 E 108 FP 30 N 60 E 118 FP 30 N 60 E 118 FP 30 N 60 E 118 FP 30 N 60 E 123	5.2.1.	Hallgenerat	orer	n-Ty	ype	nü	bei	sic	ht	mit	Ec	kda	ate	n										. 76
FA 24 79 FC 32 80 FC 33 80 FC 34 80 RHY 19 82 SBV 525 82 SBV 579 84 SBV 599 85 TC 21 94 RHY 10 95 RHY 11 95 RHY 11 95 RHY 11 95 RHY 11 96 RHY 18 96 RHY 18 96 RHY 18 96 RHY 18 96 SV 200 88 SV 210 91 SV 230 91 SV 230 91 SV 230 91 FP 17 D 500 E 100 FP 17 L 200 E 102 FP 30 D 250 E 104 FP 30 L 100 E 106 FP 30 N 60 E 108 FP 110 D 155 110 FP 110 L 100 E 106 FP 30 N 60 E 108 FP 110 D 155 110 FP 110 L 100 E 106 FP 30 N 60 E 108 FP 110 D 155 110 FP 110 L 100 E 106 FP 30 N 60 E 108 FP 110 D 155 110 FP 110 L 100 E 106 FP 30 N 60 E 108 FP 110 D 155 110 FP 110 L 100 E 106 FP 30 N 60 E 108 FP 110 D 155 110 FP 110 L 100 E 106 FP 30 N 60 E 108 FP 110 D 155 110 FP 110 L 100 E 112 FP 111 L 100 114 FP 30 L 100 K 116 FP 30 N 60 K 118 5.3. Positionsensoren 120 RHY 15 121 RHY 20 121 SBV 566 123		EA 218																						. 77
FC 32 FC 33 FC 34 FC 34 RHY 19 RHY 19 RESTANCE SEV 525 REST 527 RESTANCE SEV 525 REST 527 RESTANCE SEV 525 REST 525 REST 526 REST 527 RHY 10 RESTANCE SEV 526 RHY 11 RESTANCE SEV 526 RHY 18 RHY 20 RHY 15 RHY 20 RHY 18 RHY 20 RHY 18 RHY 19 RHY 18 RHY		FA 22e																						. 77
FC 33 FC 34 RHY 19 S0 SBV 525 SBV 525 SBV 579 S84 SBV 599 TC 21 SBY 510 SBY 510 SBY 511 SBY 51		FA 24																						. 79
FC 34 80 RHY19 82 SBV 525 82 SBV 579 84 SBV 599 85 TC 21 94 RHY10 95 RHY11 95 RHY18 96 RHY18 S1 98 SV110 86 SV 200 88 SV 210 91 SV 230 S 91 5.2.2. Feldplatten-Typenübersicht mit Eckdaten 99 FP17 D 500 E 100 FP 77 L 200 E 102 FP 30 N 60 E 104 FP 30 N 60 E 106 FP 30 N 60 E 108 FP 110 L 60 112 FP 111 L 100 114 FP 30 N 60 K 116 FP 30 N 60 K 118 5.3. Positionssensoren 120 5.3.1 Hallsensoren-Typenübersicht mit Eckdaten 120 RHY 15 121 RHY 20 121 SBV 566 123		FC32																						. 80
RHY19 82 SBV525 82 SBV579 84 SBV599 85 TC 21 94 RHY10 95 RHY11 95 RHY17 96 RHY18 96 RHY18 96 RHY18 96 RHY18 96 SV100 88 SV110 86 SV200 88 SV210 91 SV230 S 91 5.2.2. Feldplatten-Typenübersicht mit Eckdaten 99 FP17 D 500 E 100 FP17 L 200 E 100 FP17 L 200 E 100 FP30 D 250 E 104 FP30 N 60 E 106 FP30 L 100 E 106 FP30 L 100 E 106 FP30 N 60 E 112 FP111 L 100 114 FP30 L 100 E 112 FP111 L 100 I 114 FP30 L 100 E 112 FP111 L 100 I 114 FP30 L 100 E 112 FP111 L 100 I 114 FP30 L 100 E 112 FP111 L 100 I 114 FP30 L 100 E 112 FP111 L 100 I 114 FP30 L 100 E 112 FP111 L 100 I 114 FP30 L 100 E 112 FP111 L 100 I 114 FP30 L 100 E 112 FP111 L 100 I 114 FP30 L 100 E 112 FP111 L 100 I 114 FP30 L 100 E 112 FP111 L 100 I 114 FP30 L 100 E 112 FP111 L 100 I 1		FC33																						. 80
SBV 525 82 SBV 579 84 SBV 599 85 TC 21 94 RHY 10 95 RHY 11 95 RHY 18 96 RHY 18 S1 98 SV 200 88 SV 210 91 SV 230 S 91 5.2.2. Feldplatten-Typenübersicht mit Eckdaten 99 FP 17 D 500 E 100 FP 30 D 250 E 104 FP 30 N 60 E 108 FP 110 D 155 110 FP 110 L 60 112 FP 111 L 100 114 FP 30 N 60 K 118 5.3. Positionssensoren 120 5.3.1 Hallsensoren-Typenübersicht mit Eckdaten 120 RHY 15 121 RHY 20 121 SBV 566 123		FC 34																						. 80
SBV 579 84 SBV 599 85 TC 21 94 RHY 10 95 RHY 11 95 RHY 17 96 RHY 18 96 RHY 18 1 98 SV 200 88 SV 210 91 SV 230 S 91 5.2.2. Feldplatten-Typenübersicht mit Eckdaten 99 FP 17 D 500 E 100 FP 30 D 250 E 104 FP 30 L 100 E 106 FP 30 N 60 E 108 FP 110 L 60 112 FP 111 L 100 114 FP 30 L 100 K 116 FP 30 N 60 K 118 5.3. Positionssensoren 120 5.3.1. Hallsensoren-Typenübersicht mit Eckdaten 120 RHY 15 121 RHY 20 121 SBV 566 123		RHY19																						. 82
SBV599 85 TC21 94 RHY10 95 RHY11 95 RHY17 96 RHY18 96 RHY18S1 98 SV110 86 SV200 88 SV210 91 SV230S 91 5.2.2. Feldplatten-Typenübersicht mit Eckdaten 99 FP17 D500E 100 FP30 D 250E 104 FP30 L 100E 106 FP30 N60E 106 FP110 L 105 110 FP110 L 60 112 FP111 L 100 114 FP30 L 100 K 116 FP30 N 60 K 118 5.3. Positionssensoren 120 5.3.1 Hallsensoren-Typenübersicht mit Eckdaten 120 RHY 15 121 RHY 20 121 SBV 566 123		SBV 525 .																						. 82
TC 21 94 RHY 10 95 RHY 11 95 RHY 11 95 RHY 17 96 RHY 18 96 RHY 18 196 RY 18 198 SV 110 86 SV 200 88 SV 210 91 SV 230 S 91 5.2.2. Feldplatten-Typenübersicht mit Eckdaten 99 FP 17 D 500 E 100 FP 17 L 200 E 102 FP 30 D 250 E 104 FP 30 L 100 E 106 FP 30 N 60 E 108 FP 110 D 155 110 FP 110 L 60 112 FP 111 L 100 114 FP 30 L 100 K 116 FP 30 N 60 K 118 5.3. Positionssensoren 120 RHY 15 121 RHY 20 121 RHY 20 121 SBV 566 123		SBV 579 .																						. 84
RHY10		SBV 599 .																						. 85
RHY11 95 RHY17 96 RHY18 96 RHY18 96 RHY18 1 98 SV110 86 SV 200 88 SV 210 91 SV 230 S 91 5.2.2 Feldplatten-Typenübersicht mit Eckdaten 99 FP17 D 500 E 100 FP17 L 200 E 102 FP 30 D 250 E 102 FP 30 D 100 E 106 FP 30 N 60 E 106 FP 110 D 155 106 FP 110 D 155 110 FP 110 L 60 112 FP 111 L 100 114 FP 30 L 100 K 116 FP 30 N 60 K 116 FP 30 N 60 K 116 FP 30 N 60 K 118 5.3. Positionssensoren 120 RHY 15 121 RHY 20 121 SBV 566 123		TC 21																						. 94
RHY11 95 RHY17 96 RHY18 96 RHY18S1 98 SV110 86 SV200 88 SV210 91 SV230S 91 5.2.2. Feldplatten-Typenübersicht mit Eckdaten 99 FP17 D 500 E 100 FP17 L 200 E 102 FP30 D 250 E 104 FP30 N 60 E 106 FP110 D 155 110 FP110 D 155 110 FP111 L 100 114 FP30 N 60 K 118 5.3. Positionssensoren 120 5.3.1. Hallsensoren-Typenübersicht mit Eckdaten 120 RHY 15 121 RHY 20 121 SBV 566 123		RHY10																						. 95
RHY17 96 RHY18 96 RHY18S1 98 SV110 86 SV200 88 SV210 91 SV230S 91 5.2.2 Feldplatten-Typenübersicht mit Eckdaten 99 FP17 D 500 E 100 FP17 L 200 E 102 FP 30 D 250 E 104 FP 30 L 100 E 106 FP 30 N 60 E 106 FP 110 D 155 110 FP 110 L 60 112 FP 111 L 100 114 FP 30 L 100 K 116 FP 30 N 60 K 116 FP 30 N 60 K 118 5.3. Positionssensoren 120 RHY 15 121 RHY 20 121 SBV 566 123		RHY11																						
RHY 18 96 RHY 18 S1 98 SV 110 86 SV 200 88 SV 210 91 SV 230 S 91 5.2.2. Feldplatten-Typenübersicht mit Eckdaten 99 FP 17 D 500 E 100 FP 30 D 250 E 102 FP 30 L 100 E 106 FP 30 N 60 E 108 FP 110 D 155 110 FP 110 L 60 112 FP 111 L 100 114 FP 30 N 60 K 116 FP 30 N 60 K 118 5.3. Positionssensoren 120 5.3.1. Hallsensoren-Typenübersicht mit Eckdaten 120 RHY 15 121 RHY 20 121 SBV 566 123		RHY17																						. 96
RHY18S1 98 SV110 86 SV200 88 SV210 91 SV230S 91 5.2.2. Feldplatten-Typenübersicht mit Eckdaten 99 FP17 D 500 E 100 FP17 L 200 E 102 FP30 D 250 E 104 FP30 L 100 E 106 FP30 N 60 E 108 FP110 D 155 110 FP110 L 60 112 FP110 L 100 K 114 FP30 L 100 K 116 FP30 N 60 K 118 5.3. Positionssensoren 120 S.3.1. Hallsensoren-Typenübersicht mit Eckdaten 120 RHY 15 121 RHY 20 121 SBV 566 123		RHY18																						
SV110 86 SV200 88 SV210 91 SV230 S 91 5.2.2 Feldplatten-Typenübersicht mit Eckdaten 99 FP17 D 500 E 100 FP30 D 250 E 102 FP30 L 100 E 106 FP30 N 60 E 108 FP110 D 155 110 FP110 L 60 112 FP111 L 100 114 FP30 L 100 K 116 FP30 N 60 K 118 5.3. Positionssensoren 120 5.3.1 Hallsensoren-Typenübersicht mit Eckdaten 120 RHY 15 121 RHY 20 121 SBV 566 123		RHY18S1															Ċ							
SV 200 88 SV 210 91 SV 230 S 91 5.2.2. Feldplatten-Typenübersicht mit Eckdaten 99 FP 17 D 500 E 100 FP 17 L 200 E 102 FP 30 D 250 E 104 FP 30 L 100 E 106 FP 30 N 60 E 108 FP 110 D 155 110 FP 110 L 60 112 FP 111 L 100 114 FP 30 L 100 K 116 FP 30 N 60 K 118 5.3. Positionssensoren 120 5.3.1. Hallsensoren-Typenübersicht mit Eckdaten 120 RHY 15 121 RHY 20 121 SBV 566 123				Ċ					Ċ								Ċ	Ċ	Ċ	Ċ	Ċ		Ċ	
SV 210 91 SV 230 S 91 5.2.2. Feldplatten-Typenübersicht mit Eckdaten 99 FP 17 D 500 E 100 FP 17 L 200 E 102 FP 30 D 250 E 104 FP 30 L 100 E 106 FP 30 N 60 E 108 FP 110 D 155 110 FP 110 L 60 112 FP 111 L 100 114 FP 30 L 100 K 116 FP 30 N 60 K 118 5.3. Positionssensoren 120 S.3.1. Hallsensoren-Typenübersicht mit Eckdaten 120 RHY 15 121 RHY 20 121 SBV 566 123																							Ċ	
SV 230 S 91 5.2.2. Feldplatten-Typenübersicht mit Eckdaten 99 FP 17 D 500 E 100 FP 17 L 200 E 102 FP 30 D 250 E 104 FP 30 L 100 E 106 FP 30 N 60 E 108 FP 110 D 155 110 FP 110 L 60 112 FP 111 L 100 114 FP 30 L 100 K 116 FP 30 N 60 K 118 5.3. Positionssensoren 120 S.3.1. Hallsensoren-Typenübersicht mit Eckdaten 120 RHY 15 121 RHY 20 121 SBV 566 123																								
5.2.2. Feldplatten-Typenübersicht mit Eckdaten 99 FP 17 D 500 E 100 FP 17 L 200 E 102 FP 30 D 250 E 104 FP 30 L 100 E 106 FP 30 N 60 E 108 FP 110 D 155 110 FP 111 L 100 112 FP 111 L 100 K 116 FP 30 N 60 K 118 5.3. Positionssensoren 120 S.3.1 Hallsensoren-Typenübersicht mit Eckdaten 120 RHY 15 121 RHY 20 121 SBV 566 123		-																			Ī		Ċ	
FP17 D 500 E 100 FP17 L 200 E 102 FP30 D 250 E 104 FP30 L 100 E 106 FP30 N 60 E 108 FP110 D 155 110 FP110 L 60 112 FP111 L 100 114 FP30 L 100 K 116 FP30 N 60 K 118 5.3. Positionssensoren 120 S.3.1 Hallsensoren-Typenübersicht mit Eckdaten 120 RHY 15 121 RHY 20 121 SBV 566 123	5.2.2.	Feldplatten	-Tvr	en	übe	ersi	ch:	t m	it E	cko	date	en												
FP17L200E 102 FP30D250E 104 FP30L100E 106 FP30N60E 108 FP110D155 110 FP110L60 112 FP111L100 114 FP30L100K 116 FP30N60K 118 5.3. Positionssensoren 120 5.3.1 Hallsensoren-Typenübersicht mit Eckdaten 120 RHY15 121 RHY20 121 SBV566 123	•																Ċ							
FP30 D 250 E 104 FP30 L 100 E 106 FP30 N 60 E 108 FP110 D 155 110 FP110 L 60 112 FP111 L 100 114 FP30 L 100 K 116 FP30 N 60 K 118 5.3. Positionssensoren 120 5.3.1. Hallsensoren-Typenübersicht mit Eckdaten 120 RHY 15 121 RHY 20 121 SBV 566 123																								
FP30 L 100 E 106 FP30 N 60 E 108 FP110 D 155 110 FP110 L 60 112 FP111 L 100 114 FP30 L 100 K 116 FP30 N 60 K 118 5.3. Positionssensoren 120 5.3.1. Hallsensoren-Typenübersicht mit Eckdaten 120 RHY 15 121 RHY 20 121 SBV 566 123								Ċ					-									-	Ċ	
FP30 N 60 E 108 FP110 D 155 110 FP110 L 60 112 FP111 L 100 114 FP30 L 100 K 116 FP30 N 60 K 118 5.3. Positionssensoren 120 5.3.1. Hallsensoren-Typenübersicht mit Eckdaten 120 RHY 15 121 RHY 20 121 SBV 566 123				Ċ	Ċ	Ċ	Ċ	Ċ			Ċ	Ċ		·	Ċ						Ċ		Ċ	
FP110 D 155 110 FP110 L 60 112 FP111 L 100 114 FP30 L 100 K 116 FP30 N 60 K 118 5.3. Positionssensoren 120 5.3.1. Hallsensoren-Typenübersicht mit Eckdaten 120 RHY 15 121 RHY 20 121 SBV 566 123				Ċ	Ċ			·				·		Ī						Ī		-	Ċ	
FP110 L 60 112 FP111 L 100 114 FP30 L 100 K 116 FP30 N 60 K 118 5.3. Positionssensoren 120 5.3.1. Hallsensoren-Typenübersicht mit Eckdaten 120 RHY 15 121 RHY 20 121 SBV 566 123					•	Ċ		•	•	•	·	•	•	•	•	•	·	·	•	•	·	•	•	
FP111 L 100 114 FP30 L 100 K 116 FP30 N 60 K 118 5.3. Positionssensoren 120 5.3.1. Hallsensoren-Typenübersicht mit Eckdaten 120 RHY 15 121 RHY 20 121 SBV 566 123				Ċ	Ċ		Ċ	·			·		•	•	Ċ	•	·	•	•	•	•	•	•	
FP30 L 100 K 116 FP30 N 60 K 118 5.3. Positionssensoren 120 5.3.1. Hallsensoren-Typenübersicht mit Eckdaten 120 RHY15 121 RHY20 121 SBV 566 123					•			•	•	•	·		•	•		•	•	·	·	•	•	•	•	444
FP 30 N 60 K 118 5.3. Positionssensoren 120 5.3.1. Hallsensoren-Typenübersicht mit Eckdaten 120 RHY 15 121 RHY 20 121 SBV 566 123				•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
5.3.1. Hallsensoren-Typenübersicht mit Eckdaten 120 RHY15 121 RHY20 121 SBV 566 123																								
5.3.1. Hallsensoren-Typenübersicht mit Eckdaten 120 RHY15 121 RHY20 121 SBV 566 123	5.3.	Positionsse	ensc	rei	n							_			_									. 120
RHY15						bei	sic	ht														•		
RHY 20	_,_,,,,																			•		•		
SBV 566																				•	•	•	•	
The state of the s																			•	•	•	•	•	
				•					•				•								•	•	•	

Datenteil

5.4.	Angahen zur Qualität	68
	FP313L100	66
	FP 312 L 100 (ohne Verstärker)	66
		66
		66
5.3.3.2.		66
	FP 300 N 2 × 35 (mit und ohne Verstärker)	58
5.3.3.1.	Potentiometer für 270° Drehwinkel	
5.3.3.	Kontaktlose Potentiometer-Typenübersicht mit Eckdaten	
	FP212L100	
	FP 212 D 250	49
	FP211 D 155	45
	FP210L100	40
	FP 210 D 250	35
	FP201 L100	31
	FP200 L100 ■	29
5.3.2.	Feldplattensensoren-Typenübersicht mit Eckdaten	28

[■] Nicht für Neuentwicklung

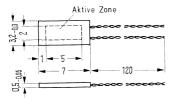
5.2. Magnetfeldhalbleiter

5.2.1. Hallgeneratoren-Typenübersicht mit Eckdaten

Тур	Material	Leerlauf- empfindlichkeit bezogen auf 1 T K ₈₀ (V/AT)	Leerlauf- hallspannung bei I_{1n} und 1 T U_{20} (mV)	Ohmsche Null- kompo- nente <i>R</i> ₀ (mV/A)	Steuer- strom Nennwert I _{1n} (mA)	Innen- wider- stand steuerseit. $R_{10}(\Omega)$	Seite
EA 218 FA 22e FA 24 FC 32 FC 33 FC 34 RHY 19 SBV 525 SBV 579 SBV 599 SV 110 III SV 110 SV 200 ²) SV 210 SV 230 S TC 21 RHY 10 RHY 11 RHY 17 RHY 18	InAs InAs InAsP InAsP InAsP InAs InAs InAs InAs InAs InAs InAs InAs	≥ 0,85 ≥ 0,8 ≥ 0,75 ≥ 1,3 ≥ 1,45 ≥ 1,45 ≥ 1,5 ≥ 0,97 ≥ 1,1 ≥ 5 ca. 100¹) ca. 50¹) ≥ 10¹) ≥ 6,5¹) ≥ 0,60 ≥ 0,7 ≥ 0,7 ≥ 6¹) ≥ 6¹) ≥ 6¹)	≥ 85 ≥ 300 ≥ 300 ≥ 130 ≥ 145 ≥ 290 ≥ 120 ≥ 97 ≥ 110 ≥ 250 ≥ 1000 ≥ 800 ≥ 300 ≥ 300 ≥ 650 ≥ 70 ≥ 105 ≥ 300 ≥ 150	<pre>< 5 < 2 < 2,5 < 1,5 < 1 < 3 < 2,5 < 1 < 667³) < 400³) < 300³) < 300³) < 2 < 2,5 < 2 < 33,3³) < 57,1³)</pre>		3 2 1,4 6,5 5 5 3,5 2,2 1,8 8 500 200 60 30 30 1,2 2 3 30 30	77 77 79 80 80 82 82 84 85 86 86 88 91 91 94 95 95 96
RHY18S1	InAs	≥ 31′)	≥ 25	< 1000	10	40	98

Betriebstemperaturbereich -20°C bis +90°C, falls keine anderen Werte im Datenblatt angegeben.

¹⁾ Bezogen auf $B = 0.5 \text{ T} (1 \text{ T} = 1 \text{ Tesla} = 10^4 \text{ Gauss})$


 $^{^2}$) Auch mit Anschlußfahnen und als Chip lieferbar 3) Umrechnung der ohmschen Nullspannung $U_{\rm 280}$ mit Hilfe des Nennsteuerstromes $I_{\rm 1n}$

EA 218 und FA 22e sind Hallgeneratoren zur Messung von Gleich- und Wechselfeldern (Halbleitermaterial InAs).

- EA 218 Hallspannungsanschlüsse: rot/gelb, Steuerstromanschlüsse: grün/violett. (Beim Einbau ist die Oberseite [Elektrodensitz] zu isolieren.)
- FA 22e Hallspannungsanschlüsse: blauer Schlauch, Steuerstromanschlüsse: roter Schlauch, Drahtlänge: 120 mm, Schlauchlänge: 100 mm. (Die vorderen 10 mm des Systems dürfen weder auf Druck noch auf Biegung beansprucht werden.)

Тур	Bestellnummer
EA 218	Q64001-E218
FA 22e	Q64001-F22-E

EA 218

Gewicht etwa 0,3 g Maße in mm

FA 22e

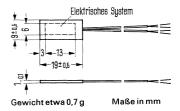
Gewicht etwa 0,4 g

Maße in mm

Grenzdaten

Maximal zulässiger Steuerstrom in ruhender Luft Wärmeleitwert zwischen Halbleiterschicht und Außenseite des Mantels (beidseitig) Betriebstemperatur Lagertemperatur

	EA 218	FA 22e	
I_{1M}	150	200	mA
G _{thG} T T _s		ca. 20 is + 90 is + 100	mW/K °C °C


Kenndaten ($T_U = 25$ °C)		EA 218	FA 22e	
Nennwert des Steuerstromes bei Betrieb in Luft	I_{1n}	100	150	mA
Leerlaufhallspannung bei I_{1n} ; $B = 1 \text{ Tesla}^2$)	U_{20}	≧ 85	≧ 120	mV
Abschlußwiderstand für lineare Anpassung				
für den Feldbereich 0–1 T	R_{LL}	5 bis 20 ¹)	ca.8	Ω
Linearisierungsfehler bei Abschluß mit R _{LL}				
(bezogen auf 1 T)	F_{LL}	< 1	< 1	%
Leerlaufempfindlichkeit (bezogen auf 1 T)	K_{B0}	≧ 0,85	≥ 0,8	V/AT
Mittlere Empfindlichkeit bei Abschluß mit R _{LL}				
(in % v. K _{B0} bezogen auf 1 T)	K_{BL}	ca. 70	ca. 65	%
Steuerseitiger Innenwiderstand bei $B = 0$				
(einschließlich Zuleitungswiderstand)	R ₁₀	ca. 3	ca. 2	Ω
Hallseitiger Innenwiderstand bei $B = 0$				
(einschließlich Zuleitungswiderstand)	R_{20}	ca. 1,5	ca. 1,5	Ω
Ohmsche Nullkomponente	R_0	< 5·10 ⁻³	< 2.10-3	V/A
Induktive Nullkomponente	A_2	< 0,05	< 0,05	cm²
Mittlerer Temperaturkoeffizient von U_{20}				
zwischen – 20 und +90° C	β	ca 0,1	ca. – 0,1	%/° C
Mittlerer Temperaturkoeffizient von R_{10}				•
und R_{20} zwischen -20 und $+90^{\circ}$ C	α	ca. 0,2	ca.0,2	%/° C

 $[\]overline{\ ^1)}$ Genauer Widerstandswert ist auf der Verpackung angegeben $\overline{\ ^2)}$ T = Tesla = 10^4 Gauß

Die Feldsonde FA 24 eignet sich zur Ausmessung von Gleich- und Wechselfeldern (Halbleitermaterial InAs).

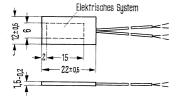
Hallspannungsanschlüsse: blauer Schlauch, Steuerstromanschlüsse: roter Schlauch, Drahtlänge: 120 mm, Schlauchlänge: 100 mm.

Тур	Bestellnummer
FA 24	Q64001-F24

Grenzdaten

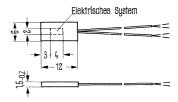
Maximal zulässiger Steuerstrom in ruhender Luft	I_{1M}	500	mA
Wärmeleitwert zwischen Halbleiterschicht		00	
und Außenseite des Mantels (beidseitig)	<i>G</i> thG		mW/K
Betriebstemperatur	τ	-20 bis + 90	°C
Lagertemperatur	T_{S}	-50 bis + 100	°C

Kenndaten ($T_U = 25^{\circ} C$)

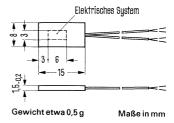

Kermaaton (70 20 0)			
Nennwert des Steuerstromes bei Betrieb in Luft	I_{1n}	400	mA
Leerlaufhallspannung bei I_{1n} ; $B = 1$ Tesla	U_{20}	≥ 300	mV
Abschlußwiderstand für lineare Anpassung	_	_	
für den Feldbereich 0–1 T	R_{LL}	ca. 7	Ω
Linearisierungsfehler bei Abschluß mit R _{LL}			1
(bezogen auf 1 T)	F_{LL}	< 1	%
Leerlaufempfindlichkeit (bezogen auf 1 T)	K_{B0}	≧ 0,75	V/AT
Mittlere Empfindlichkeit bei Abschluß mit R _{LL}		·	l
(in % v. K _{B0} , bezogen auf 1 T)	K_{BL}	ca. 75	%
Steuerseitiger Innenwiderstand bei $B = 0$			
(einschließlich Zuleitungswiderstand)	R_{10}	ca.1,4	Ω
Hallseitiger Innenwiderstand bei $B = 0$			
(einschließlich Zuleitungswiderstand)	R_{20}	ca.1,1	Ω
Ohmsche Nullkomponente	R_0	< 2,5 · 10-3	V/A
Induktive Nullkomponente	A_2	< 0,05	cm ²
Mittlerer Temperaturkoeffizient von U_{20}			
zwischen – 20 und +90° C	β	ca0,07	%/°C
Mittlerer Temperaturkoeffizient von R_{10}			
and B_{20} zwischen -20 and $+90^{\circ}$ C	α	ca. 0,2	%/°C

Die Feldsonden FC 32, FC 33 und FC 34 sind für hochgenaue Messungen magnetischer Felder vorgesehen. Der Temperaturkoeffizient β ist besonders klein (Halbleitermaterial InAsP).

Тур	Bestellnummer
FC 32	Q64003-F32
FC 33	Q64003-F33
FC 34	Q64003-F34


Hallspannungsanschlüsse: blauer Schlauch, Steuerstromanschlüsse: roter Schlauch, Drahtlänge: 120 mm, Schlauchlänge: 100 mm.

FC 34


Gewicht etwa 1,3 g

FC 32

Gewicht etwa 0,4 g

FC 33

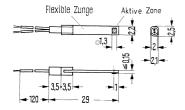
Grenzdaten

Maximal zulässiger Steuerstrom in ruhender Luft Wärmeleitwert zwischen Halbleiterschicht und Außenseite des Mantels (beidseitig) Betriebstemperatur Lagertemperatur

	FC 32	FC 33	FC 34	
I_{1M}	125	125	250	mA
G_{thG} T T_{S}	_	ca. 25 20 bis + 50 bis +	65	mW/K °C °C

Kenndaten ($T_U = 25^{\circ} C$)		FC 32	FC 33	FC 34	-
Nennwert des Steuerstromes bei Betrieb in Luft Leerlaufhallspannung bei I_{1n} ;	I _{1n}	100	100	200	mA
B = $1 T^1$) Abschlußwiderstand für lineare Anpassung	<i>U</i> ₂₀	≧ 130	≧ 145	≧ 290	mV
(für den Feldbereich 0–1 Tesla) Linearisierungsfehler bei Abschluß	R _{LL}	ca. 13	ca. 15	ca. 25	Ω
mit R _{LL} bezogen auf 1 T ¹) Leerlaufempfindlichkeit	F _{LL}	< 0,2	< 0,2	< 0,2	%
(bezogen auf 1 T) Mittlere Empfindlichkeit bei Abschlu	<i>K</i> B0 ß	≧ 1,30	≧ 1,45	≥ 1,45	V/AT
mit R_{LL} (in % v. K_{B0} bezogen auf 1 T) Steuerseitiger Innenwiderst. b. $B = 0$	<i>K</i> BL)	ca. 70	ca. 75	ca. 85	%
(einschl. Zuleitungswiderstand) Hallseitiger Innenwiderst. bei $B = 0$	R ₁₀	ca.6,5	ca. 5	ca.5	Ω
(einschl. Zuleitungswiderstand) Ohmsche Nullkomponente	R_{20} R_0	ca. 2,4 < 1,5 · 10 ⁻³	ca. 3 < 1,0 ⋅ 10 ⁻³	ca. 3 < 1,0 · 10 ⁻³	Ω V/A
Induktive Nullkomponente Mittlerer Temperaturkoeffizient von	A ₂	< 0,05	< 0,05	< 0,05	cm ² %/°C
U_{20} zwischen -20 und $+65^{\circ}$ C Mittl. Temperaturkoeffizient v. R_{10}	β	ca0,06	ca0,04	ca0,04	%/°C
und R_{20} zwischen $-20\mathrm{und}+65^{\circ}\mathrm{C}$	α	ca.0,2	ca.0,2	ca.0,2	70/ C

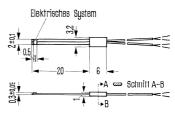
^{1) 1} T = 1 Tesla = 10⁴ Gauß


RHY 19 und SBV 525 sind Hallgeneratoren zur Messung von magnetischen Feldern in kleinen Luftspalten (Halbleitermaterial InAs).

Hallspannungsanschlüsse: blauer Schlauch; Steueranschlüsse: roter Schlauch.

RHY 19 Drahtlänge: 150 mm; Schlauchlänge: 120 mm. SBV 525 Drahtlänge: 130 mm; Schlauchlänge: 100 mm. Elektrisches System und Anschlüsse mit Lackisolation.

Тур	Bestellnummer
RHY19	Q61708-Y19
SBV 525	Q64099-V 525


RHY19

Gewicht etwa 0,3 g

Maße in mm

SBV 525

Gewicht etwa 0,2 g

Maße in mm

Grenzdaten

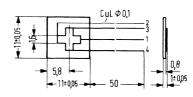
Maximal zulässiger Steuerstrom in ruhender Luft Betriebstemperatur Lagertemperatur

	RHY19	SBV 525	
I_{1M}	125	125	mA
Τ	- 20 bis + 90		°C
T_{S}	-50 bis + 100		°C

Kenndaten ($T_U = 25^{\circ} \text{C}$)		RHY19	SBV 525	
Nennwert des Steuerstromes bei Betrieb in Luft Leerlaufspannung bei I_{1n} ; $B = 1$ Tesla	I _{1n} U ₂₀	80 ≥ 120	100 ≧ 97	mA mV
Abschlußwiderstand für lineare Anpassung für den Feldbereich 0–1 T Linearisierungsfehler bei Abschluß mit <i>R</i> LL	RLL	≧ 100	3 bis 20 ¹)	Ω
(bezogen auf 1 T)	F_{LL}	< 0,5	< 1	%
Leerlaufempfindlichkeit (bezogen auf 1 T) Mittlere Empfindlichkeit bei Absobluß	K _{B0}	≧ 1,5	≧ 0,97	V/AT
Mittlere Empfindlichkeit bei Abschluß mit R_{LL} (in % v. K_{B0} bezogen auf 1 T) Steuerseitiger Innenwiderstand bei $B=0$	K_{BL}	ca. 90	ca. 70	% .
(einschl. 0,5 Ω Zuleitungswiderstand) Hallseitiger Innenwiderstand bei $B=0$	R ₁₀	ca. 3,5	ca. 2,2	Ω
(einschl. 0,5 Ω Zuleitungswiderstand)	R_{20}	ca. 3,5	ca.1,8	Ω
Ohmsche Nullkomponente Induktive Nullkomponente	R_0 A_2	< 3·10 ⁻³ < 0,05	< 2,5·10 ⁻³ < 0,05	V/A cm ²
Mittlerer Temperaturkoeffizient von U_{20} zwischen -20 und $+90^{\circ}$ C Mittlerer Temperaturkoeffizient von R_{10}	β	ca0,1	ca0,1	%/° C
und R_{20} zwischen -20 und $+90^{\circ}$ C	α	ca. 0,2	ca. 0,2	%/° C

¹⁾ Genauer Widerstandswert auf der Verpackung angegeben

mΑ


Die Feldsonde SBV 579 ist nur für die Messung magnetischer Gleichfelder geeignet. Das kreuzförmige Hallplättchen gewährleistet einen besonders kleinen Linearisierungsfehler (Halbleitermaterial InAs). Elektrisches System ist mit einem Schutzlacküberzug versehen.

Тур	Bestellnummer
SBV 579	Q64099-V579

Steuerstromanschlüsse: 1,2 Hallspannungsanschlüsse: 3,4

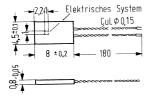
Drahtlänge:

50 mm

Grenzdaten

Maximal zulässiger Steuerstrom bei Betrieb in ruhender Luft	I_{1M}	200
Wärmeleitwert zwischen Halbleiterschicht		
und Grundplatte	G_{thG}	ca. 65
Betriebstemperatur	τ	-20 bis + 80
Lagertemperatur	$T_{\rm S}$	-50 bis + 100

Kenndaten ($T_U = 25^{\circ} C$)


Nennwert des Steuerstromes (frei in Luft)
Leerlaufhallspannung bei I_{1n} und $B = 1 \text{ T}$
Steuerseitiger Innenwiderstand
Hallseitiger Innenwiderstand
Abschlußwiderstand für lineare Anpassung
(für Feldbereich 0–1 T)
Linearisierungsfehler bei Abschluß mit R _{LL}
(bezogen auf 1 T)
Leerlaufempfindlichkeit (bezogen auf 1 T)
Ohmsche Nullkomponente
Mittlerer Temperaturkoeffizient von U_{20}
zwischen 0° C und 100° C
Mittlerer Temperaturkoeffizient von R_{10} und R_{20}
zwischen 0° C und 100° C

I _{1n} U ₂₀ R ₁₀ R ₂₀	100 ≥ 110 ca.1,8 ca.1,8	mA mV Ω
R_{LL}	ca. 250	Ω
F _{LL} K _{B0} R ₀	< 0,5 > 1,1 < 1,0·10 ⁻³	% V/AT V/A
β	ca. — 0,05	%/°C
α	ca.0,2	%/°C

Die Feldsonde SBV 599 eignet sich zur nahezu punktförmigen Ausmessung magnetischer Gleich- und Wechselfelder (Halbleitermaterial: InAs).

Тур	Bestellnummer
SBV 599	Q64099-V598

Maximal zulässiger Steuerstrom bei Betrieb

Steuerstromanschlüsse: grün/braun Hallspannungsanschlüsse: rot/gelb

Drahtlänge 180 mm Gewicht 0,3 g Maße in mm

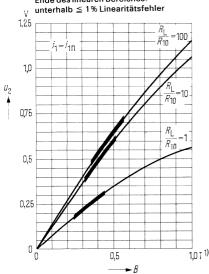
Grenzdaten

in ruhender Luft Wärmeleitwert zwischen Halbleiterschicht	I_{1M}	100	mA
und Grundplatte	G_{thG}	ca. 65	mW/K
Betriebstemperatur	T	- 20 bis + 80	°C
Lagertemperatur	T _S	-50 bis + 100	°C
Kenndaten ($T_U = 25^{\circ} \mathrm{C}$)			
Nennwert des Steuerstromes (frei in Luft)	I_{1n}	50	mA
Leerlaufhallspannung bei I_{1n} und $B = 1 \text{ T}$	U_{20}	≥ 250	mV
Steuerseitiger Innenwiderstand	R_{10}	ca. 8	Ω
Hallseitiger Innenwiderstand	R_{20}	ca. 8	Ω
Abschlußwiderstand für lineare Anpassung		,	
(für Feldbereich 0–1 T)	R_{LL}	≥ 2	kΩ
Linearisierungsfehler bei Abschluß mit R _{LL}			
(bezogen auf 1 T)	F_{LL}	< 0,5	%
Leerlaufempfindlichkeit (bezogen auf 1 T)	$\kappa_{\!\scriptscriptstyle \mathrm{B0}}$	> 5	V/AT
Ohmsche Nullkomponente	R_0	< 1,0·10 ⁻³	V/A
Induktive Nullkomponente	A_2	< 0,03	cm ²
Mittlerer Temperaturkoeffizient von U_{20}			
zwischen 0° C und 100° C	$oldsymbol{eta}$	ca0,07	%/K
Mittlerer Temperaturkoeffizient von R_{10} und R_{20}			
zwischen 0° C und 100° C	α	ca. 0,2	%/K
Temperaturgang der ohmschen Nullkomponente			
bei i _{1n} zwischen — 20° C und 80° C		< ±1,5	μV/K

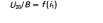
Der SV 110 ist ein Hallgenerator hoher Empfindlichkeit und relativ hohen Innenwiderstandes für Regel- und Steueraufgaben (Halbleitermaterial InSb – Aufdampfschicht).

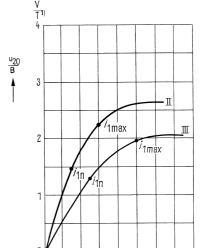
Anschlüsse: Hallspannung rot; Steuerstrom grün; Drahtlänge 100 mm.

Тур	Bestellnummer
SV 110/II	Q64021-S110-S2
SV110/III	Q64021-S110-S3

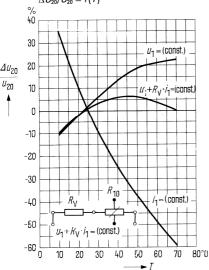

Gewicht etwa 0,1 g

Maße in mm


Grenzdaten		SV110/II	SV110/III	
Maximal zul. Steuerstrom bei Betrieb in Luft Betriebstemperatur Lagertemperatur	Ι _{1Μ} Τ Τ _S	1	50 pis +80 pis +100	mA °C °C
Kenndaten ($T_U = 25^{\circ} C$)				
Nennwert des Steuerstromes bei Betrieb in Luft Leerlaufhallspannung bei $B=1$ Tesla und I_{1n} Leerlaufempfindlichkeit bezogen auf $B=0,5$ T Steuerseitiger Innenwiderstand bei $B=0$ Hallseitiger Innenwiderstand bei $B=0$ Ohmsche Nullspannung bei I_{1n} Induktive Nullkomponente Mittlerer Temperaturkoeffizient von U_{20}	I _{1n} U ₂₀ K _{B0} R ₁₀ R ₂₀ U _{R0} A ₂	15 \ge 1,0 ca.100 ca.500 \le R_{10} \le 10 \le 0,2	25 \geq 0,8 ca. 50 ca. 200 \leq R_{10} \leq 10 \leq 0,2	$\begin{array}{c} \text{mA} \\ \text{V} \\ \text{V/AT} \\ \Omega \\ \Omega \\ \text{mV} \\ \text{cm}^2 \end{array}$
zwischen 0 und 50° C Temperaturkoeffizient von <i>R</i> ₁₀	β	ca1,0	ca1,0	%/°C
zwischen 0 und 50° C	α	ca. — 1,5	ca1,5	%/°C


Halispannung

 $U_2 = f(B)$; $R_L/R_{10} = \text{Parameter}$ Stark betonter Kurvenbereich: Ende des linearen Bereiches:


Empfindlichkeitskurve $U_{20}/B = f(i_1)$

Temperaturabhängigkeit

der Hallspannung $\Delta U_{20}/U_{20} = f(T)$

Der optimale Vorwiderstand R_V kann aus den individuellen Daten nach:

40

60

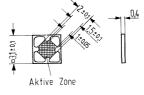
- /₁

80 mA

0

20

$$R_{\rm V} = \frac{R_{\rm 10}(\alpha - \beta)}{\beta}$$
 errechnet werden.

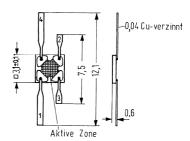

¹⁾ T = Tesla, 1 Tesla = 104 Gauß

Der Hallgenerator SV 200 besitzt eine mittlere Empfindlichkeit bei relativ kleinem Temperaturkoeffizienten.

Im linearen Bereich ist er u. a. als Multiplikator zu verwenden. Er eignet sich auch für Regelund Steueraufgaben. Ein wesentlicher Vorteil sind hierbei die drei verfügbaren Ausführungsformen (Halbleitermaterial InAs – Aufdampfschicht).

A. Hallchip (durch Thermokompression kontaktierbar).

Тур	Bestellnummer
SV 200 A	Q62801-F3


SV 200 A (Ausführung: Chip)

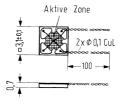
Maße in mm

B. mit Lötfahnen

Тур	Bestellnummer	
SV 200 B	O64021-S 200-S 9	

Hallspannung: Lötfahne 1/2 Steuerstrom: Lötfahne 3/4

SV 200 B (Ausführung: mit Lötfahnen)

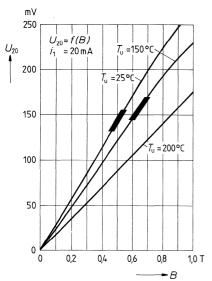

Maße in mm

C. mit Anschlußdrähten

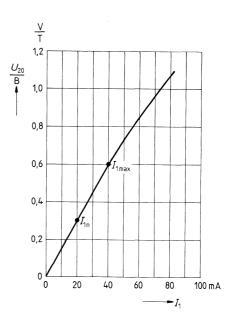
Тур	Bestellnummer
SV 200 C	Q64021-S 200-S 6

Drähte: Cu-Lackdraht 0,1 Ø

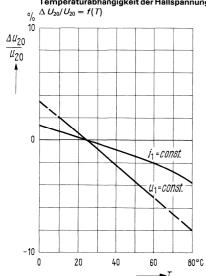
100 mm lang Hallspannung: rot/gelb Steuerstrom: grün/blau



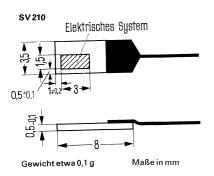
SV 200 C (Ausführung: mit Anschlußdrähten)


Maße in mm

Grenzdaten		SV 200	
Maximal zulässiger Steuerstrom bei Betrieb in Luft	$\overline{I_{1M}}$	40	mA
Betriebstemperatur	T	-40 bis + 100	°C
Lagertemperatur	T_{S}	-55 bis +110	°C
Kenndaten			
Nennwert des Steuerstromes bei Betrieb in Luft	I_{1n}	20	mA
Leerlaufhallspannung bei I_{1n} und $B = 0.5 T$	U_{20}	≧100	mV
Leerlaufempfindlichkeit (bezogen auf $B = 0.5 T$)	K_{B0}	≧10	V/AT
Steuerseitiger Innenwiderstand bei $B = 0$	R ₁₀	ca. 60	Ω
Hallseitiger Innenwiderstand bei $B = 0$	R_{20}	ca. 60	Ω
Ohmsche Nullspannung bei I_{1n}	U_{R0}	≦ 6	mV
Mittlerer Temperaturkoeffizient von U_{20}			
zwischen 0 und +100° C	$\boldsymbol{\beta}$	ca0,1	%/K
Mittlerer Temperaturkoeffizient von R_{10}	•		
zwischen 0 und 100° C	α	ca. 0,1	%/K
Temperaturgang der Nullspannung zwischen 0 und 100° C		≦ 10	μV/K
Induktive Nullkomponente (bei Ausführungsform C)	A_2	≤0.05	cm ²


Linearität $U_{20} = f(B)$ $T_U = Parameter$ stark betonter Kurventeil: Ende des Bereiches mit einem Linearitätsfehler von 1%

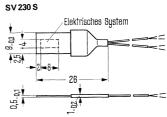
Empfindlichkeit $U_{20}/B = f(I_1)$



Hallgeneratoren mittlerer Empfindlichkeit bei relativ kleinem Temperaturkoeffizienten. Im linearen Bereich u. a. als Multiplikator zu verwenden; "außerhalb" für Regel- und Steueraufgaben (Halbleitermaterial InAs - Aufdampfschicht).

Тур	Bestellnummer	
SV 210	Q64021-S 210	
SV 230 S	Q64021-S 230-S	

Hallspannungsanschluß roter und gelber Draht, Steuerstromanschluß grüner und blauer Draht, Drahtlänge 100 mm


Grenzdaten

Maximal zulässiger Steuerstrom bei Betrieb in Luft Betriebstemperatur Lagertemperatur

Kenndaten ($T_u = 25^{\circ} C$)

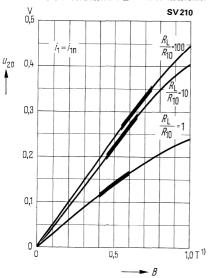
Nennwert des Steuerstromes bei Betrieb in Luft1) Leerlaufhallspannung bei I_{1n} ; B = 1 Tesla Leerlaufempfindlichkeit bezogen auf B = 0.5 TSteuerseitiger Innenwiderstand bei B = 0Hallseitiger Innenwiderstand bei B=0Ohmsche Nullspannung bei I_{1n} Mittlerer Temperaturkoeffizient von U₂₀ zwischen 0 und 100° C Mittlerer Temperaturkoeffizient von R₁₀ zwischen 0 und 100° C

symmetrisches System

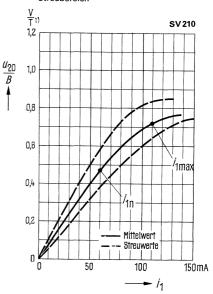
Gewicht etwa 1 g

Schlauchlänge:

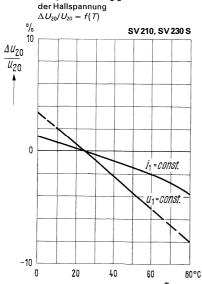
Maße in mm


Hallspannungsanschlüsse: blauer Schlauch roter Schlauch Steuerstromanschlüsse: 110 mm Drahtlänge: 100 mm

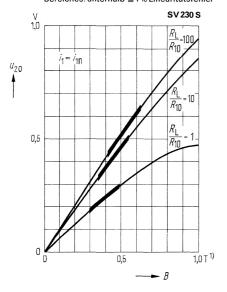
	SV210	SV 230 S	
I _{1 M} T T _s	110 - 70 bis + 100 - 80 bis + 110	200 - 40 bis + 100 - 50 bis + 110	°C °C


I _{1n} U ₂₀	60 ≥ 300	100 ≥ 650	mA mV
K _{B0} R ₁₀ R ₂₀ U _{R0}	≥ 6 ca. 30 $\le R_{10}$ ≤ 2	$\ge 6,5$ ca. 30 $\le R_{10}$ < 10	$\begin{array}{c} \text{V/AT} \\ \Omega \\ \Omega \\ \text{mV} \end{array}$
β	ca. —0,1	ca0,1	%/K
α	ca.0,1	ca.0,1	%/K

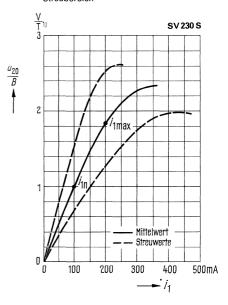
¹⁾ Bei Betrieb mit beiderseitiger Kühlung (z. B. Polschuh) kann sowohl der Nenn- als auch der maximal zulässige Steuerstrom um den Faktor 2-3 erhöht werden.


Linearität $U_{20} = f(B)$; $R_U/R_{10} = \text{Parameter}$ Stark betonter Kurventeil: Ende des linearen Bereiches: unterhalb ≤ 1 % Linearitätsfehler

Empfindlichkeit $U_{20}/B = f(i_1)$ Streubereich



Temperaturabhängigkeit der Hallspannung

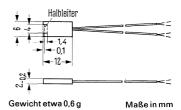


^{1) 1} Tesla = 104 Gauß

Linearität $U_{20} = f(B)$; $R_L/R_{10} = \text{Parameter}$ Stark betonter Kurventeil: Ende des linearen Bereiches: unterhalb ≤ 1 % Linearitätsfehler

Empfindlichkeit $U_{20}/B = f(i_1)$ Streubereich

^{1) 1} Tesla = 104 Gauß


TC 21 ist ein Hallgenerator zum Messen der Tangentialfeldstärke an magnetischen Werkstoffen (Halbleitermaterial InAs).

Hallspannungsanschlüsse: blauer Schlauch;

Steuerstromanschlüsse: roter Schlauch;

Drahtlänge: 120 mm Schlauchlänge: 100 mm

Тур	Bestellnummer
TC 21	Q64003-T21

Grenzdaten

Maximal zulässiger Steuerstrom in ruhender Luft	I_{1M}	200	mA
Wärmeleitwert zwischen Halbleiterschicht			
und Außenseite des Mantels (beidseitig)	G_{thG}	ca. 30	mW/K
Betriebstemperatur	τ	-20 bis + 90	°C
Lagertemperatur	T_{S}	-50 bis + 100	°C

Kenndaten ($T_U = 25^{\circ} C$)

Reinidateir $(70 = 25 \text{ C})$			
Nennwert des Steuerstromes bei Betrieb in Luft	I_{1n}	150	mA
Leerlaufhallspannung bei I_{1n} ; und $B = 1 \text{ T}$ Abschlußwiderstand für lineare Anpassung	<i>U</i> ₂₀	≧ 90	mV
für den Feldbereich 0–1 T	R_{LL}	ca. 6	Ω
Linearisierungsfehler bei Abschluß mit R _{LL}			
(bezogen auf 1 T)	FLL	< 1,5	%
Leerlaufempfindlichkeit (bezogen auf 1 T)	K _{B0}	≧ 0,6	V/AT
Mittlere Empfindlichkeit bei Abschluß mit R _{LL}			•
(in % v. K _{B0} bezogen auf 1 T)	<i>K</i> _{BL} │	ca. 65	%
Steuerseitiger Innenwiderstand bei $B = 0$			
(einschließlich 0,45 Ω Zuleitungswiderstand)	R ₁₀	ca. 1,2	Ω
Hallseitiger Innenwiderstand bei $B = 0$			
(einschließlich 0,65 Ω Zuleitungswiderstand)	R ₂₀	ca. 1,2	Ω
Ohmsche Nullkomponente	R_0	< 2.10-3	V/A
Induktive Nullkomponente	A_2	< 0,08	cm ²
Mittlerer Temperaturkoeffizient von U_{20}			
zwischen – 20 und +90° C	β	ca0,1	%/° C
Mittlerer Temperaturkoeffizient von R_{10} und R_{20}			
zwischen – 20 und +90° C	α	ca. 0,2	%/° C
Wirksame Fläche des elektrischen Systems		3 · 1,5	mm²

Typ RHY 10

RHY 10 und RHY 11 sind Hallgeneratoren zur Messung von magnetischen Axialfeldern in Bohrungen kleiner bzw. größerer Durchmesser (Halbleitermaterial InAs).

Hall spannungsanschlüsse: blauer Schlauch, Steuerstromanschlüsse: roter Schlauch.

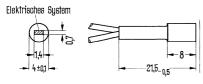
Bestellnummer

Q61708-Y10

RHY11 Q61708-Y11		RHY11		
RHY10			Preßstoffträger El.	System
Messingrohr Degussitträger El. System 2,5±0,05		40	10 +12,3-0,3 +10,0	3,6_0,
Gewicht etwa 1,3 g Maße in mm		Gewicht etwa	a 0,6 g	Maße in mm
Grenzdaten		RHY10	RHY11	
Maximal zulässiger Steuerstrom bei Betrieb in ruhender Luft Betriebstemperatur Lagertemperatur	I _{1M} T T _S		 200 is +90 is +100	mA °C °C
Kenndaten ($T_U = 25^{\circ} \mathrm{C}$)				
Nennwert des Steuerstromes bei Betrieb in Luft Leerlaufhallspannung bei I_{1n} ; $B=1$ Tesla Abschlußwiderstand für lineare Anpassung	<i>I</i> _{1n} <i>U</i> ₂₀	100 ≥ 70	150 ≥ 105	mA mV
für den Feldbereich 0–1 T Linearisierungsfehler bei Abschluß mit R _{LL}	R _{LL}	ca. 10	ca. 20	Ω
(bezogen auf 1 T) Leerlaufempfindlichkeit bezogen auf: 1 T¹) 0.01 T	F _{LL} K _{B0} K _{B0}	< 1 ≥ 0,7 ≥ 0,5	< 1 ≥ 0,7 ≥ 0,5	% V/AT V/AT
Mittlere Empfindlichkeit bei Abschluß mit R_{LL} (in % v. K_{B0} bezogen auf 1 T)	K _{BL}	ca. 80	ca.90	%
Steuerseitiger Innenwiderstand bei $B=0$ (einschl. Zuleitungswiderstand) Hallseitiger Innenwiderstand bei $B=0$	R ₁₀	ca. 2	ca.3	Ω
(einschl. Zuleitungswiderstand) Ohmsche Nullkomponente Induktive Nullkomponente	R ₂₀ R ₀ A ₂	ca. 1,6 < 2,5·10 ⁻³ < 0,05	ca. 2,6 < 2 · 10 ⁻³ < 0,05	Ω V/A cm²
Mittlerer Temperaturkoeffizient von U_{20} zwischen -20 und $+90^{\circ}$ C	β	ca0,1	ca0,1	%/° C

^{1) 1} T = 104 Gauß

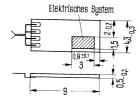
zwischen - 20 und + 90° C


Mittlerer Temperaturkoeffizient von R_{10} und R_{20}

RHY 17 und RHY 18 sind Hallgeneratoren zur Messung von magnetischen Feldern bei Tieftemperaturen bis – 269° C. Flach- bzw. Rundform sind für Universal- bzw. Axialmessung geeignet. Anwendung in der Kryotechnik, u. a. Supraleitung (Halbleitermaterial InAs – Aufdampfschicht).

Hallspannungsanschlüsse: rote Drähte; Steuerstromanschlüsse: grüne Drähte.

Тур	Bestellnummer
RHY17	Q61708-Y17
RHY18	Q61708-Y18


RHY 18

Gewicht etwa 1,5 g

Maße in mm

RHY17

Gewicht etwa 0.4 a

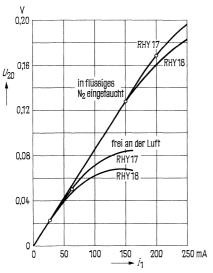
Maße in mm

Grenzdaten

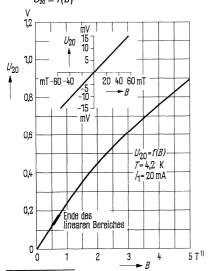
Maximal zulässiger Steuerstrom bei Betrieb in Luft Betriebstemperatur Lagertemperatur

Kenndaten ($T_U = 25^{\circ} C$)

Nennwert¹) des Steuerstromes bei Betrieb in Luft²) Leerlaufhallspannung bei I_{1n} und B=1 T Leerlaufempfindlichkeit bez. auf B=0,5 T Mittlerer steuerseitiger Innenwiderstand bei B=0 Mittlerer hallseitiger Innenwiderstand bei B=0 Ohmsche Nullspannung bei I_{1n} und B=0 Mittlerer Temperaturkoeffizient von U_{20} zwischen -269 und +100° C Mittlerer Temperaturkoeffizient von R_{10} zwischen -269 und +100° C

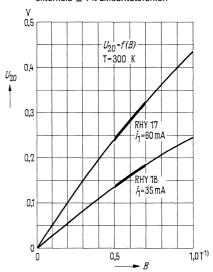

	RHY17	RHY18	
I_{1M}	110	70	mA
Τ	- 269 l	ois +80	°C
T_{S}	- 269 l	ois + 100	°C

I _{1n} U ₂₀ K _{B0} R ₁₀ R ₂₀ U _{R0}	60 ≥ 300 ≥ 6,0 ca. 30 ca. 30 ≤ 2	35 ≥ 150 ≥ 6,0 ca. 30 ca. 30 ≤ 2	$ \begin{array}{c c} mA \\ mV \\ V/AT \\ \Omega \\ \Omega \\ mV \end{array} $
β	ca0,1	ca0,1	%/°C
α	ca. +0,1	ca. +0,1	%/°C

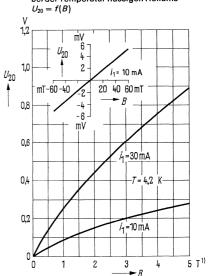

¹⁾ Mit Nennwert wird die obere Grenze des Aussteuerbereiches für Normalbetrieb bezeichnet.

²⁾ Bei Betrieb der Sonden in verfl. Gasen (He, N₂, O₂) kann der Steuerstrom um den Faktor 3–4 erhöht werden.

Leerlaufhallspannung $U_{20}=f(i_1)$ Die schwach gekrümmte Kurvenform zeigt, daß die Sonden weit über den Nennsteuerstrom hinaus belastbar sind.



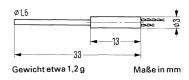
Kennlinie einer Tieftemperatur-Hallsonde RHY 17 bei der Temperatur flüssigen Heliums $U_{20}=f(B)$



1) 1 Tesla = 104 Gauß

Leerlaufhallspannung $U_{20} = f(B)$ Stark betonter Kurventeil: Ende des linearen Bereiches: unterhalb $\leq 1\%$ Linearitätsfehler.

Kennlinie einer Tieftemperatur-Hallsonde RHY 1: bei der Temperatur flüssigen Heliums



°C

RHY 18 S1 ist ein Hallgenerator zur Messung von Magnetfeldern bei tiefen Temperaturen (-269°C) in besonders kleinen Bohrungen (Halbleitermaterial InAs – Aufdampfschicht).

Hallspannungsanschluß: blauer Schlauch; Drahtlänge = 20 mm; Steuerstromanschluß: roter Schlauch; Drahtlänge = 25 mm.

Тур	Bestellnummer
RHY18S1	Q61708-Y18-S2

Grenzdaten

Maximal zulässiger Steuerstrom in ruhender Luft
Betriebstemperatur
Lagertemperatur

Kenndaten (
$$T_U = 25^{\circ} C$$
)

Nennwert¹) des Steuerstromes bei Betrieb in Luft²) Leerlaufhallspannung (bei
$$I_{1n}$$
 und $B=1$ Tesla) Leerlaufempfindlichkeit bei I_{1n} bezogen auf $B=0,5$ T Steuerseitiger Innenwiderstand bei $B=0$ Hallseitiger Innenwiderstand bei $B=0$ Ohmsche Nullspannung bei I_{1n} Mittlerer Temperaturkoeffizient von U_{20} zwischen -196 und $+50^{\circ}$ C Mittlerer Temperaturkoeffizient von R_{10} zwischen -196 und $+50^{\circ}$ C

I_{1n}	10	mA
U_{20}	25	mV
K_{B0}	≧ 3	V/AT
R_{10}	ca. 40	Ω
R_{20}	ca. 40	Ω
U_{R0}	≦ 10	mV
β	ca0,1	%/°C
α	ca. 0,1	%/°C

-269 bis +50 -269 bis +50

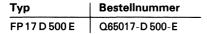
¹⁾ Mit Nennwert wird die obere Grenze des Aussteuerbereiches für Normalbetrieb bezeichnet.

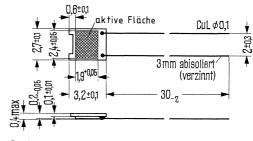
²⁾ Bei Betrieb der Sonden in verfl. Gasen (He, N₂, O₂) kann der Steuerstrom um den Faktor 2 erhöht werden.

6.2.2. Feldplatten – Typenübersicht mit Eckdaten bei $T_U = 25^{\circ}$ C

6.2.2.1. Feldplatten auf Eisenträger

Тур	Grund- wider- stand (Toleranz ± 20%)	Relative Widersta änderung Induktion ±0,3 T	bei	koeffizient bei Induktion <i>B</i> =			Wärme leitwert mW/K	Seite	
	$R_0(\Omega)$	$R_{\rm B}/R_{\rm 0}$		TK ₂₅ (%/°C)		G_{thG}	G _{thU}	
FP 17 D 500 E	500	3 (> 2,8)	15 (> 12)	-1,8	-2,7	-2,9	15	1	100
FP17L200E	200	1,85 (> 1,7)	8,5	-0,16	-0,38	-0,54	15	1	102
FP 30 D 250 E	250	3 (> 2,8)	15	-1,8	-2,7	-2,9	10	0,8	104
FP30L100E	100	1,85	8,5 (> 7)	-0,16	-0,38	-0,54	10	0,8	106
FP 30 N 60 E	60	1,6 (> 1,4)	6 (> 5)	+0,02	-0,13	-0,26	10	0,8	108


6.2.2.2. Differential-Feldplatten auf Eisenträger

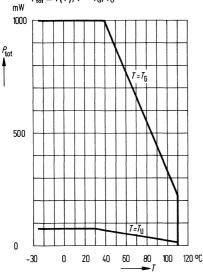

Тур	Grund- wider- stand (Toleranz ±20%)	Mitten- symmetrie	Widerstands- änderung bei Induktion <i>B</i> =		Temperatur- koeffizient bei Induktion B = 0T ±0,3T ±1T		Wärn leitwe mW/	ert	Seite	
	$R_0(\Omega)$	M(%)	$R_{\rm B}/R_{\rm 0}$		TK ₂₅ (%/°	C)		G _{thG}	G_{thU}	
FP 110 D 155	2×155	2 (< 5)	3 (> 2,8)	15 (> 12)	-1,8	-2,7	-2,9	10	0,8	110
FP110L60	2×60	(< 5)	1,85 (> 1,7)	8,5 (> 7)	-0,16	-0,38	-0,54	10	0,8	112
FP111L100	2×100	(< 5)	1,85 (> 1,7)	8,5 (> 7)	-0,16	-0,38	-0,54	15	1	114

6.2.2.3. Feldplatten auf Keramikträger

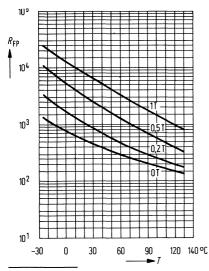
Тур	Grund- wider- stand (Toleranz	Relative Widerstar änderung Induktion	bei	Temperatur- koeffizient bei Induktion <i>B</i> =		Wärme- leitwert		Seite	
	± 20 %)	±0,3T	±1T	0 T	±0,3T	±1T	mW/K		
	$R_0(\Omega)$	$R_{\rm B}/R_{\rm 0}$		TK ₂₅ (%/°C	()		G _{thG}	G _{thU}	
FP 30 L 100 K	100	1,85 (> 1,7)	8,5 (> 7)	-0,16	-0,38	-0,54	10	0,8	116
FP 30 N 60 K	60	1,6 (> 1,4)	6 (> 5)	+0,02	-0,13	-0,26	10	0,8	118

Die Feldplatte FP 17 D 500 E ist ein auf einen Eisenträger montierter magnetisch steuerbarer Widerstand aus InSb/NiSb mit einem Grundwiderstand R_0 von 500 Ω .

Gewicht etwa 0,02 g

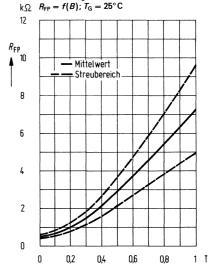

Maße in mm

Grenzdaten

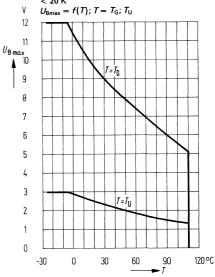

Max. Betriebstemperatur Lagertemperatur Max. elektr. Belastung ($T_G = 25^{\circ}$ C) Isolationsspannung zwischen System und Unterlage Wärmeleitwert:	T _{max} T _S P _{tot} U _I	110 -40 bis +130 1000 100	°C °C mW V
einseitig auf Metallfläche aufgeklebt	G_{thG}	15	mW/K
frei in Luft	G_{thU}	1	mW/K
Kenndaten ($T_U = 25^{\circ} \text{C}$)			
Grundwiderstand	R_0	500	Ω
Toleranz des Grundwiderstandes Relative Widerstandsänderung:	R_0 -Tol.	±20	%
$B = \pm 0.3 T^1)$	$R_{\rm B}/R_{ m 0}$	3 (> 2,8)	_
$B = \pm 1 \text{ T}$	$R_{\rm B}/R_{\rm 0}$	15 (> 12)	_
Temperaturkoeffizient:	-, -	,	
B = 0 T	<i>TK</i> ₂₅	–1,8	%/°C
$B = \pm 0.3 T$	TK ₂₅	-2,7	%/° C
$B = \pm 1 \mathrm{T}$	TK ₂₅	– 2 ,9	%/° C

^{1) 1} T = 1 Tesla = 104 Gauß

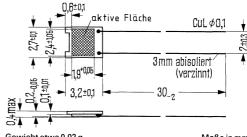
Temperaturabhängigkeit der zulässigen Gesamtverlustleistung $P_{\text{tot}} = f(T)$; $T = T_{G}$, T_{U}



Temperaturabhängigkeit des Feldplattenwiderstandes¹) $R_{\text{FP}} = f(T)$; B = Parameter


¹⁾ für Mittelwerte des Feldplattenwiderstandes R_{FP}

Abhängigkeit des Feldplatten-Widerstandes R_{FP} von der magnetischen Induktion


Temperaturabhängigkeit der maximal zulässigen Betriebsspannung für Systemübertemperatur < 20 K

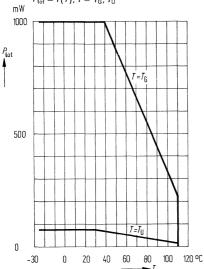
В

Die Feldplatte FP 17 L 200 E ist ein auf einen Eisenträger montierter magnetisch steuerbarer Widerstand aus InSb/NiSb mit einem Grundwiderstand R_0 von 200 Ω .

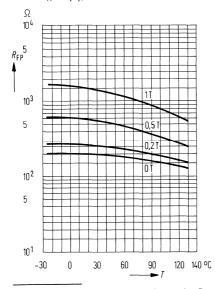
Тур	Bestellnummer
FP 17 L 200 E	Q65017-L200-E

Gewicht etwa 0,02 g

Maße in mm

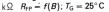

Grenzdaten

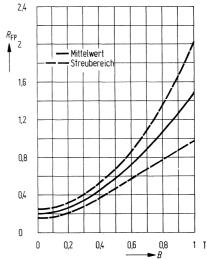
Max. Betriebstemperatur Lagertemperatur Max. elektr. Belastung ($T_{\rm G}=25^{\circ}{\rm C}$) Isolationsspannung zwischen System und Unterlage Wärmeleitwert: einseitig auf Metallfläche aufgeklebt	$T_{ m max}$ $T_{ m S}$ $P_{ m tot}$ $U_{ m l}$	110 -40 bis +130 1000 100	°C °C mW V
frei in Luft	G_{thU}	1	mW/K
Kenndaten $(T_{ij} = 25^{\circ} \text{C})$			


Grundwiderstand	R_0	200	Ω
Toleranz des Grundwiderstandes	R_0 -Tol.	± 20	%
Relative Widerstandsänderung:			
$B=\pm 0.3 T^1)$	$R_{ m B}/R_0$	1,85 (> 1,7)	_
$B = \pm 1 \text{T}$	$R_{\rm B}/R_0$	8,5 (> 7)	-
Temperaturkoeffizient:		, ,	
B = 0 T	TK ₂₅	-0,16	%/°C
$B = \pm 0.3 T$	TK ₂₅	-0.38	%/° C
$B = \pm 1 \text{T}$	TK ₂₅	-0,54	%/°C

^{1) 1} T = 1 Tesla = 104 Gauß

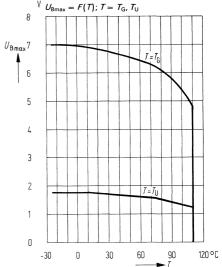
Temperaturabhängigkeit der zulässigen Gesamtverlustleistung $P_{\text{tot}} = f(T)$; $T = T_{\text{G}}$; T_{U}

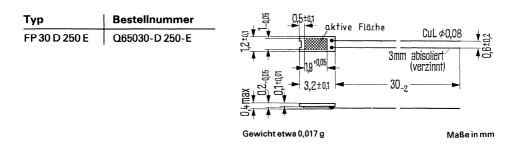

Temperaturabhängigkeit des Feldplattenwiderstandes') $R_{\text{FP}} = f(T)$; B = Parameter



 $^{^{1}}$) für Mittelwerte des Feldplattenwiderstandes R_{FP}

Abhängigkeit


des Feldplattenwiderstandes von der magnetischen Induktion B



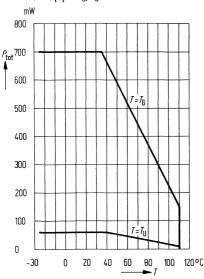
Temperaturabhängigkeit der maximal zulässigen Betriebs-

spannung für Systemübertemperatur < 20 K

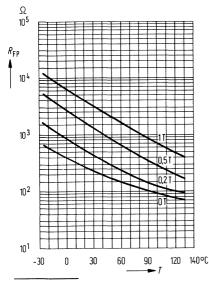
Die Feldplatte FP 30 D 250 E ist ein auf einen Eisenträger montierter magnetisch steuerbarer Widerstand aus InSb/NiSb mit einem Grundwiderstand R_0 von 250 Ω .

Grenzdaten

Max. Betriebstemperatur	$T_{\sf max}$	110	l °C
Lagertemperatur	Ts	-40 bis + 130	°C
Max. elektr. Belastung ($T_G = 25$ °C)	P_{tot}	700	mW
Isolationsspannung zwischen System und Unterlage	U_{l}	100	٧
Wärmeleitwert:			
einseitig auf Metallfläche aufgeklebt	G_{thG}	10	mW/K mW/K
frei in Luft	G_{thU}	0,8	mW/K
Kenndaten ($T_U = 25 ^{\circ}$ C)			
Grundwiderstand	R_0	250	Ω

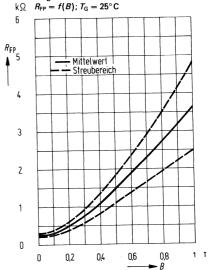

Grundwiderstand
Toleranz des Grundwiderstandes
Relative Widerstandsänderung:
$B=\pm 0.3T^1)$
$B = \pm 1 \mathrm{T}$
Temperaturkoeffizient:
$B = 0 \mathrm{T}$
$B = \pm 0.3 T$

<i>H</i> ₀ -101.	±20	%
$R_{ m B}/R_0$ $R_{ m B}/R_0$	3 (> 2,8) 15 (> 12)	-
TK ₂₅ TK ₂₅ TK ₂₅	-1,8 -2,7 -2,9	%/°C %/°C %/°C

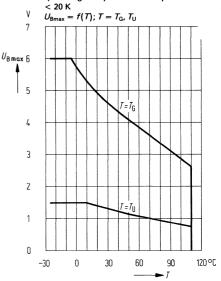

 $B = \pm 1 T$

^{1) 1} T = 1 Tesla = 104 Gauß

Temperaturabhängigkeit der zulässigen Gesamtverlustleistung $P = f(T) = T_G$, T_U

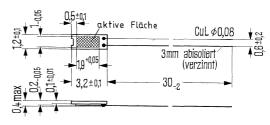


Temperaturabhängigkeit des Feldplattenwiderstandes') $R_{FP} = f(T)$; B = Parameter



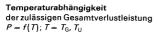
¹⁾ für Mittelwerte des Feldplattenwiderstandes R_{FP}

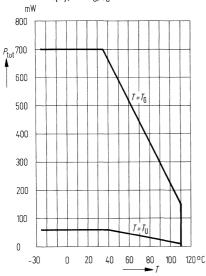
Abhängigkeit des Feldplattenwiderstandes von der magnetischen Induktion *B*



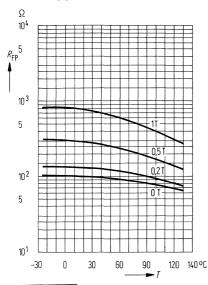
Temperaturabhängigkeit der maximal zulässigen Betriebsspannung für Systemübertemperatur < 20 K

Die Feldplatte FP 30 L 100 E ist ein auf einen Eisenträger montierter magnetisch steuerbarer Widerstand aus InSb/NiSb mit einem Grundwiderstand R_0 von 100 Ω .

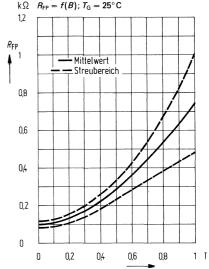

Gewicht etwa 0,017 g


Maße in mm

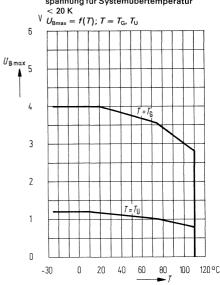
Grenzdaten


Max. Betriebstemperatur Lagertemperatur Max. elektr. Belastung ($T_{\rm G}=25^{\circ}{\rm C}$) Isolationsspannung zwischen System und Unterlage Wärmeleitwert:	T _{max} T _S P _{tot} U _I	110 -40 bis +130 700 100	°C °C mW V
einseitig auf Metallfläche aufgeklebt	G_{thG}	10	mW/K
frei in Luft	G_{thU}	0,8	mW/K
Kenndaten ($T_U = 25^{\circ}$ C)			
Grundwiderstand Toleranz des Grundwiderstandes Relative Widerstandsänderung:	<i>R</i> ₀ <i>R</i> ₀ -Tol.	100 ±20	Ω %
$B = \pm 0.3 T^1)$	$R_{\rm B}/R_{ m 0}$	1,85 (> 1,7)	_
$B = \pm 1 \text{ T}$	$R_{\rm B}/R_0$	8,5 (> 7)	_
Temperaturkoeffizient:			
B = 0 T	<i>TK</i> ₂₅	-0,16	%/° C
$B = \pm 0.3 \mathrm{T}$	TK ₂₅	-0,38	%/° C
$B = \pm 1 \text{ T}$	TK_{25}	-0,54	%/° C

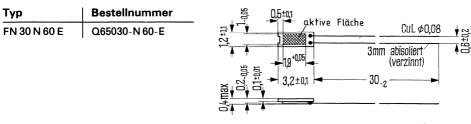
^{1) 1} T = 1 Tesla = 104 Gauß



Temperaturabhängigkeit des Feldplattenwiderstandes 1) $R_{FP} = f(T)$; B = Parameter



 $^{^{1}}$) für Mittelwerte des Feldplattenwiderstandes $R_{\rm FP}$


Abhängigkeit des Feldplattenwiderstandes von der magnetischen Induktion *B*

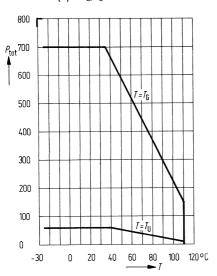
Temperaturabhängigkeit der maximal zulässigen Betriebsspannung für Systemübertemperatur

Die Feldplatte FP 30 N 60 E ist ein auf einen Eisenträger montierter magnetisch steuerbarer Widerstand aus InSb/NiSb mit einem Grundwiderstand R_0 von 60 Ω .

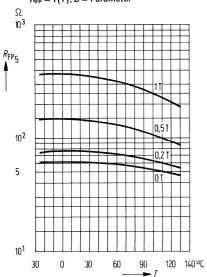
Gewicht etwa 0,017 g

Maße in mm

Grenzdaten

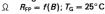

Max. Betriebstemperatur Lagertemperatur Max. elektr. Belastung ($T_G = 25^{\circ}$ C)	T _{max} T _S P _{tot}	110 -40 bis +130 700	°C °C mW
Isolationsspannung zwischen System und Unterlage	U_{l}	100	V
Wärmeleitwert: einseitig auf Metallfläche aufgeklebt	$G_{ m thG}$	10	mW/K
frei in Luft	G_{thU}	0.8	mW/K
Konndston (Ti. — 25°C)	-1110	(5/5	

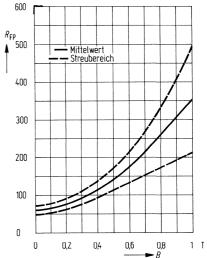
Kenndaten ($T_U = 25^{\circ}C$)

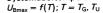

Grundwiderstand	R_0	60	Ω
Toleranz des Grundwiderstandes	R_0 -Tol.	±20	%
Relative Widerstandsänderung:			
$B=\pm 0.3T^1)$	$R_{\rm B}/R_{\rm 0}$	1,6 (> 1,4)	-
$B = \pm 1 \mathrm{T}$	$R_{\rm B}/R_{ m 0}$	6 (> 5)	-
Temperaturkoeffizient:			
B = 0 T	<i>TK</i> ₂₅	+0,02	%/°C
$B = \pm 0.3 \mathrm{T}$	<i>TK</i> ₂₅	-0,13	%/°C
$B = \pm 1 \text{ T}$	<i>TK</i> ₂₅	- 0,26	%/°C

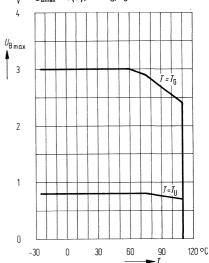
^{1) 1} T = 1 Tesla = 104 Gauß

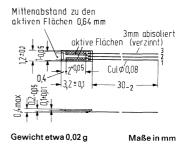
Temperaturabhängigkeit der zulässigen Gesamtverlustleistung $P = f(T) = T_G$, T_U




Temperaturabhängigkeit des Feldplattenwiderstandes¹) $R_{FP} = f(T); B = Parameter$


¹⁾ für Mittelwerte des Feldplattenwiderstandes R_{FP}


Abhängigkeit des Feldplattenwiderstandes von der magnetischen Induktion *B*

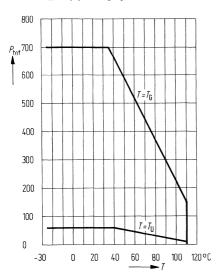

Temperaturabhängigkeit der maximal zulässigen Betriebsspannung für Systemübertemperatur < 20 K

Die Differential-Feldplatte FP 110 D 155 ist ein auf einen Eisenträger montierter magnetisch steuerbarer Widerstand aus InSb/NiSb mit einem Grundwiderstand R_0 von $2 \times 155 \Omega$.

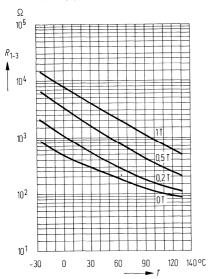
Тур	Bestellnummer
FP 110 D 155	Q65110-D155-D

Grenzdaten

Betriebstemperatur Lagertemperatur Elektr. Belastung ($T_G = 25^{\circ}$ C) Isolationsspannung zwischen System und Träger Wärmeleitwert:	T	110	°C
	T _S	-40 bis +130	°C
	P _{tot}	700	mW
	U _l	100	V
einseitig auf Metallfläche aufgeklebt	G_{thG}	10	mW/K
frei in Luft		0,8	mW/K

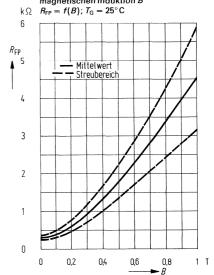

Kenndaten ($T_U = 25^{\circ}$ C)

Grundwiderstand ($B = 0$)	R_{01-3}	310	Ω
Toleranz von R _{0 1-3}	$R_{0.1-3}$ -Tol.	±20	%
Mittensymmetrie ¹)	М	2 (< 5)	%
Relative Widerstandsänderung:		, ,	
$B = \pm 0.3 T^2)$	$R_{\rm B}/R_{ m 0}$	3 (> 2,8)	_
$B = \pm 1 \text{T}$	$R_{\rm B}/R_{ m 0}$	15 (> 12)	<u>-</u>
Temperaturkoeffizient:			
B = 0 T	<i>TK</i> ₂₅	–1,8	%/° C
$B = \pm 0.3 T$	<i>TK</i> ₂₅	-2,7	%/° C
$B = \pm 1 \text{ T}$	<i>TK</i> ₂₅	– 2,9	%/°C

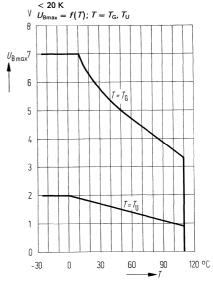

¹⁾ $M = \frac{R_1 - R_2}{R_1} \cdot 100$; für $R_1 > R_2$

^{2) 1} T = 1 Tesla = 104 Gauß

Temperaturabhängigkeit der zulässigen Gesamtverlustleistung $P_{tot} = f(T); T = T_G, T_U$

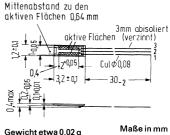


Temperaturabhängigkeit des Feldplattengesamtwiderstandes¹) $R_{1-3} = f(T)$; B = Parameter



¹⁾ für Mittelwerte des Feldplattenwiderstandes $R_{\rm FP}$

Abhängigkeit des Feldplattenwiderstandes von der magnetischen Induktion *B*



Temperaturabhängigkeit der maximal zulässigen Betriebsspannung für Systemübertemperatur

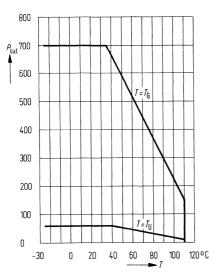
Die Differential-Feldplatte FP 110 L 60 ist ein auf einen Eisenträger montierter magnetisch steuerbarer Widerstand aus InSb/NiSb mit einem Grundwiderstand R_0 von $2 \times 60 \Omega$.

Тур	Bestellnummer
FP110L60	Q65110-L60-D

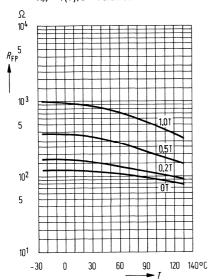
Gewicht etwa 0,02 g

Grenzdaten

Betriebstemperatur	τ	110	°C
Lagertemperatur	T_{S}	-40 bis + 130	°C
Elektr. Belastung ($T_G = 25^{\circ} C$)	P_{tot}	700	mW
Isolationsspannung zwischen System und Träger	U_{l}	100	V
Wärmeleitwert:			
einseitig auf Metallfläche aufgeklebt	G_{thG}	10	mW/K
frei in Luft	G_{thU}	0,8	mW/K

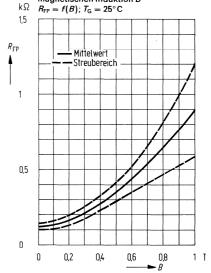

Kenndaten ($T_{11} = 25^{\circ} \text{C}$)

(10 - 20 0)			
Grundwiderstand ($B = 0$)	R ₀₁₋₃	120	$\mid \Omega$
Toleranz von R _{0 1-3}	<i>R</i> _{01–3} -Tol.	±20	%
Mittensymmetrie ¹)	M	2(<5)	%
Relative Widerstandsänderung:		, ,	1
$B=\pm 0.3T^2)$	$R_{\rm B}/R_{ m 0}$	1,85 (> 1,7)	_
$B = \pm 1 \text{ T}$	$R_{\mathrm{B}}/R_{\mathrm{0}}$	8,5 (> 7)	_
Temperaturkoeffizient:		,	
B = 0 T	<i>TK</i> ₂₅	-0,16	%/°C
$B = 0.3 \mathrm{T}$	TK ₂₅	-0.38	%/°C
B = 1 T	TK25	-0.54	%/°C

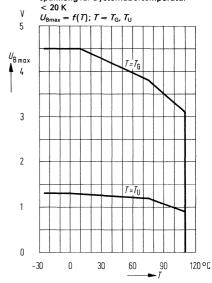

¹⁾ $M = \frac{R_1 - R_2}{R_1} \cdot 100$; für $R_1 > R_2$

^{2) 1} T = 1 Tesla = 104 Gauß

Temperaturabhängigkeit der zulässigen Gesamtverlustleistung $P_{tot} = f(T) = T_G$, T_U

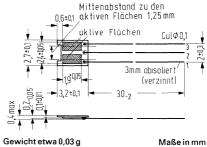


Temperaturabhängigkeit des Feldplatten-Gesamtwiderstandes¹) $R_{FP} = f(T)$; B = Parameter



¹⁾ für Mittelwerte des Feldplattenwiderstandes R_{FP}

Abhängigkeit des Feldplattenwiderstandes des Gesamtsystems von der magnetischen Induktion B



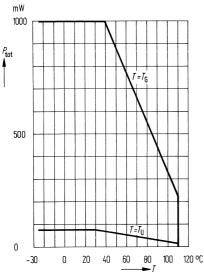
Temperaturabhängigkeit der maximal zulässigen Betriebsspannung für Systemübertemperatur

Die Differential-Feldplatte FP 111 L 100 ist ein auf einen Eisenträger montierter magnetisch steuerbarer Widerstand aus InSb/NiSb mit einem Grundwiderstand R_0 von $2 \times 100 \,\Omega$.

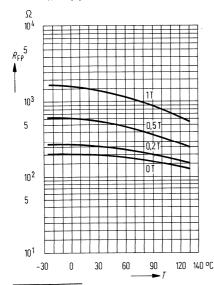
Тур	Bestellnummer
FP111L100	Q65111-L100-D

Grenzdaten

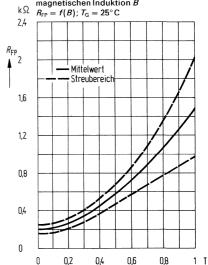
Betriebstemperatur Lagertemperatur Elektrische Belastung ($T_G=25^{\circ}\text{C}$) Isolationsspannung zwischen System und Träger	T	110	°C
	T _S	- 40 bis + 130	°C
	P _{tot}	1000	mW
	U _l	100	V
Wärmeleitwert: einseitig auf Metallfläche aufgeklebt frei in Luft	G_{thG}	15 1,0	mW/°C mW/°C


Kenndaten ($T_U = 25^{\circ} C$)

Grundwiderstand ($B = 0$)	R_{01-3}	200	Ω
Toleranz von $R_{0.1-3}$	R ₀₁₋₃ -Tol.	± 20	%
Mittensymmetrie ¹)	M	2 (< 5)	%
Relative Widerstandsänderung:		` ′	
$B = \pm 0.3 T^2)$	$R_{\rm B}/R_0$	1,85 (> 1,7)	_
$B = \pm 1 \mathrm{T}$	$R_{\rm B}/R_{\rm 0}$	8,5 (> 7)	_
Temperaturkoeffizient:		. , ,	
B = 0 T	TK ₂₅	-0,16	%/° C
$B = 0.3 \mathrm{T}$	TK ₂₅	-0,38	%/°C
B = 1 T	TK ₂₅	-0,54	%/° C

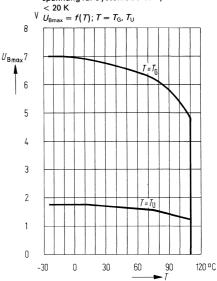

¹⁾ $M = \frac{R_1 - R_2}{R_1} \cdot 100$; für $R_1 > R_2$

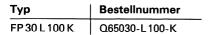
^{2) 1} T = 1 Tesla = 104 Gauß

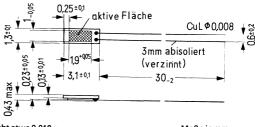

Temperaturabhängigkeit des Feldplatten-Gesamtwiderstandes¹) $R_{\text{FP}} = f(T)$; B = Parameter

 $^{^{1}}$) für Mittelwerte des Feldplattenwiderstandes R_{FP}

Abhängigkeit


des Feldplattenwiderstandes des Gesamtsystems von der magnetischen Induktion *B*


Temperaturabhängigkeit


der maximal zulässigen Betriebsspannung für Systemübertemperatur

- B

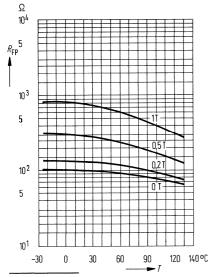
Die Feldplatte FP 30 L 100 K ist ein auf einen Keramikträger montierter magnetisch steuerbarer Widerstand aus InSb/NiSb mit einem Grundwiderstand R_0 von 100 Ω .

Gewicht etwa 0,018 g

Maße in mm

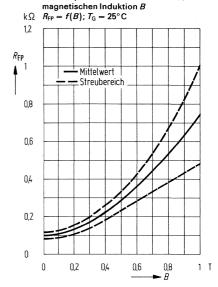
Grenzdaten

Max. Betriebstemperatur	$T_{\sf max}$	110	l °C
Lagertemperatur	T_{S}	-40 bis + 130	°C
Max. elektr. Belastung ($T_G = 25^{\circ} C$)	P_{tot}	700	mW
Isolationsspannung zwischen System und Unterlage	U_{l}	100	V
Wärmeleitwert:			
einseitig auf Metallfläche aufgeklebt	G_{thG}	10	mW/K
frei in Luft	G_{thU}	0,8	mW/K

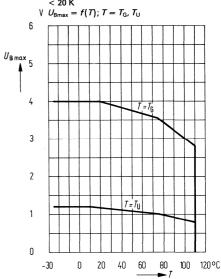

Kenndaten ($T_U = 25^{\circ}$ C)			
Grundwiderstand	R_0	100	Ω
Toleranz des Grundwiderstandes	R_0 -Tol.	±20	%
Relative Widerstandsänderung:			
$B=\pm 0.3T^1)$	$R_{\rm B}/R_0$	1,85 (> 1,7)	_
$B = \pm 1 \text{T}$	$R_{\rm B}/R_0$	8,5 (> 7)	_
Temperaturkoeffizient:			
B = 0 T	<i>TK</i> ₂₅	-0,16	%/°C
$B = \pm 0.3 T$	<i>TK</i> ₂₅	-0,38	%/°C
$B = \pm 1 \mathrm{T}$	<i>TK</i> ₂₅	-0,54	%/°C

^{1) 1} T = 1 Tesla = 104 Gauß

Temperaturabhängigkeit der zulässigen Gesamtverlustleistung $P_{\text{tot}} = f(T) = T_{\text{G}}, T_{\text{U}}$

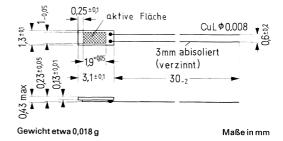


Temperaturabhängigkeit des Feldplattenwiderstandes¹) $R_{FP} = f(T)$; B = Parameter



 $^{^{1}}$) für Mittelwerte des Feldplattenwiderstandes R_{FP}

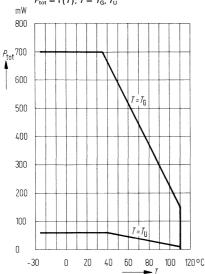
Abhängigkeit des Feldplattenwiderstandes von der



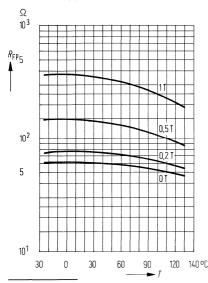
Temperaturabhängigkeit der maximal zulässigen Betriebsspannung für Systemübertemperatur < 20 K

Die Feldplatte FP 30 N 60 K ist ein auf einen Keramikträger montierter magnetisch steuerbarer Widerstand aus InSb/NiSb mit einem Grundwiderstand R_0 von 60 Ω .

Тур	Bestellnummer
FP 30 N 60 K	Q65030-N 60-K



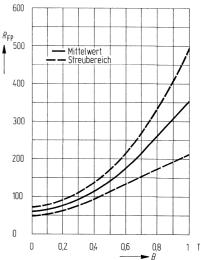
Grenzdaten


Max. Betriebstemperatur	$T_{\sf max}$	110	l °C
Lagertemperatur	T_{S}	-40 bis + 130	l∘c
Max. elektr. Belastung ($T_G = 25^{\circ} C$)	P _{tot}	700	mW
Isolationsspannung zwischen System und Unterlage	U _I	100	V
Wärmeleitwert:	•		-
einseitig auf Metallfläche aufgeklebt	G_{thG}	10	mW/K
frei in Luft	G_{thU}	0,8	mW/K
	Ollio	, 0,0	11100/10
Kenndaten ($T_U = 25^{\circ} C$)			
Grundwiderstand	R_0	60	Ω
Toleranz des Grundwiderstandes	R_0 -Tol.	± 20	%
Relative Widerstandsänderung:	•		, "
$B = \pm 0.3 T^1)$	$R_{\rm B}/R_{\rm 0}$	1,6 (> 1,4)	_
$B = \pm 1 \mathrm{T}$	$R_{\rm B}/R_{ m 0}$	6 (> 5)	_
Temperaturkoeffizient:	110,110	- (
B = 0 T	TK ₂₅	+0.02	%/°C
$B = \pm 0.3 T$	TK ₂₅	-0,13	%/°C
$B = \pm 1 \text{ T}$	TK ₂₅	-0.26	%/°C
	20		,,

^{1) 1} T = 1 Tesla = 104 Gauß

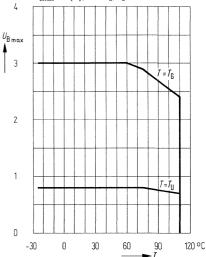
Temperaturabhängigkeit der zulässigen Gesamtverlustleistung $P_{\text{tot}} = f(T)$; $T = T_G$, T_U

Temperaturabhängigkeit des Feldplattenwiderstandes¹) $R_{FP} = f(T); B = Parameter$



 1) für Mittelwerte des Feldplattenwiderstandes R_{FP}

Abhängigkeit


 $\mbox{ des Feldplattenwiderstandes von der } \\ \mbox{ magnetischen Induktion } \\ \mbox{ B} \\ \mbox{ }$

$$\Omega$$
 $R_{FP} = f(B)$; $T_G = 25^{\circ}$ C

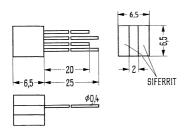
Temperaturabhängigkeit der maximal zulässigen Betriebsspannung für Systemübertemperatur

5.3. Positionssensoren

5.3.1. Hallsensoren-Typenübersicht mit Eckdaten

Тур	Material	Leerlauf- hallspannung bei I_{1n} U_{20} (mV)	Null- spannung <i>U</i> _{R0} (mV)	Steuer- strom Nennwert I _{1n} (mA)	Innen- widerstand steuerseit. $R_{10}(\Omega)$	Seite
RHY 15	InSb	$\geq 120^{1}$)	< 10	50	30	121
RHY 20	InSb	$\geq 120^{1}$)	< 10	50	30	121
SBV 566	InSb	$\geq 130^{2}$)	≤ 10	25	2055	123
KSY 10	GaAs	$\geq 100 \pm 15$	≤ ±25	5	1170±200	125

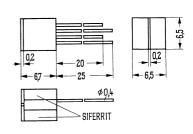
¹⁾ bei einem Sondenfluß von $2 \cdot 10^{-7}$ Wb (Wb = Weber) 2) bei $I_{3-4} = 10$ mA und Verwendung wie in Abb. Seite 124


- RHY 15 ist ein Ferrithallgenerator, der in Verbindung mit kleinen Permanentmagneten zur kontaktlosen Signalabgabe und zur Steuerung oder Regelung von Bewegungsvorgängen geeignet ist. Reichweite und Signalformen siehe Bild 18 bis 25, Seite 32–34 (Halbleitermaterial InSb).
- RHY 20 ist ein Ferrithallgenerator vom Typ RHY 15 mit Ferritkopfspiegel und einer Spaltbreite von 0,2 mm zur Abfrage von Magnetogrammen mit Wellenlängen > 1 mm). (Halbleitermaterial InSb).

Тур	Bestellnummer
RHY15	Q61708-Y15
RHY 20	Q61708-Y20

Halterungen für diese Sonden auf Anfrage.

Steuerstromanschlüsse lang, Hallspannungsanschlüsse kurz, Aufbau magnetisch symmetrisch.

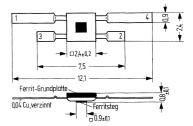

RHY 15

Gewicht etwa 2 g

Maße in mm

RHY 20

Gewicht etwa 2 g


Grenzdaten		RHY15	RHY20	
Maximal zulässiger Steuerstrom	I_{1M}	60	60	mA
Betriebstemperatur	T	−20 b	is +65	°C
Lagertemperatur	T_{S}	−50 b	is +100	°C
Kenndaten ($T_U = 25^{\circ} \text{C}$)				
Nennwert des Steuerstromes	I_{1n}	50	50	mΑ
Leerlauf-Hallspannung bei einem				
Sondenfluß von $2 \cdot 10^{-7}$ Wb und I_{1n}	U_{20}	≧ 120	≥ 120	mV
Remanenzhallspannung nach einem				
Sondenfluß von $2 \cdot 10^{-3}$ Wb und I_{1n}	U _{20 Rem}	< 5	< 5	mV
Steuerseitiger Innenwiderstand $(B = 0)$	R ₁₀	ca. 30	ca. 30	Ω
Hallseitiger Innenwiderstand $(B=0)$	R_{20}	ca. 30	ca. 30	Ω
Ohmsche Nullspannung bei I _{1n}				
(Hallgenerator entmagnetisiert)	U_{R0}	< 10	< 10	mV
Temperaturkoeffizient von U_{20}				
zwischen 0°C und 50°C	β	ca 1,5	ca 1,5	%/° C
Temperaturkoeffizient von R_{10} und R_{20}				
zwischen 0° C und 50° C	α	ca2	ca2	%/° C
Isolationswiderstand zwischen				
Halbleitersystemen und Ferritteilen	Ris	> 5	> 5	$k\Omega$

Der Hallgenerator SBV 566 wurde speziell für kontakt- und berührungslose Signalgabe bzw. zur Stellungsmeldung von Magneten entwickelt. Bei konstantem Steuerstrom ist die Hallspannung dem magnetischen Fluß durch den Ferritsteg bis zu $2 \cdot 10^{-7}$ Wb (entspricht einer Induktion von ca. 0,25 Tesla im Ferritsteg) proportional.

Die Temperaturabhängigkeit der Hallspannung läßt sich weitgehend kompensieren, wenn man dem Steuerstrompfad des Hallgenerators einen Widerstand von 0,5 R_{10} parallel schaltet und diese Kombination mit dem 3fachen Nennsteuerstrom speist (Halbleitermaterial: InSb).

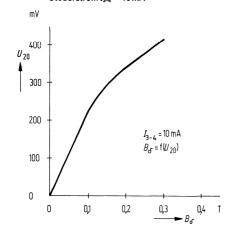
Тур	Bestellnummer		
SBV 566	Q64099-V566		

Hallspannungsanschlüsse: 1 und 2 Steuerstromanschlüsse: 3 und 4

Gewicht etwa 0,02 g

Maße in mm

Grenzdaten


Maximal zulässiger Steuerstrom bei Betrieb		1	
in ruhender Luft	$I_{\sf 1M}$	50	mA
Wärmeleitwert, einseitig auf Metallfläche aufgeklebt	G_{thG}	≥ 4	mW/K
Wärmeleitwert frei in Luft	G_{thU}	≥ 2	mW/K
Betriebstemperatur	T	-20 bis + 65	°C
Lagertemperatur	T_{S}	-50 bis + 100	°C

Kenndaten ($T_G = 25^{\circ}$ C, Hallspannungsanschlüsse: 1/2, Steuerstromanschlüsse: 3/4)

Nennwert des Steuerstromes Leerlaufhallspannung (bei $I_1 = 10 \text{mA}$,	I _{1n}	25	mA
Meßanordnung wie Abb. nächste Seite)	U_{20}	160 (≥ 130)	mV
Steuerseitiger Innenwiderstand $(B = 0)$	R ₁₀	20-55	Ω
Hallseitiger Innenwiderstand ($B=0$)	R_{20}	20-55	Ω
Ohmsche Nullspannung (bei $I_1 = 10 \text{ mA}$)	U_{R0}	≦ 10	mV
Remanenzhallspannung bei I_{1n} nach Beeinflussung			
durch einen Magnetfluß von $2 \cdot 10^{-3}$ Wb in % v. U_{20}	$U_{20~\mathrm{Rem}}$	ca. 1,5 ¹)	%
Temperaturkoeffizient von U_{20}			
zwischen 0° C und 50° C	β	ca1,5	%/° C
Temperaturkoeffizient von R_{10} und R_{20}			
zwischen 0° C und 50° C	α	ca2	%/° C
Isolationswiderstand zwischen Halbleitersystem			
und Ferritteilen	R_{is}	> 1	kΩ

¹⁾ für magnetisch geschlossenen Kreis

Leerlaufhallspannung U_{20} in Abhängigkeit von der Induktion im Luftspalt B_{δ} der Meßanordnung Steuerstrom $I_{3-4}=10\,\mathrm{mA}$

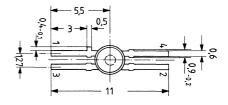
Meßanordnung zur Messung der Leerlaufhallspannung

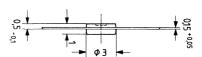
Der Positions-Sensor KSY 10 ist ein Hallgenerator und besteht aus einem ionenimplantierten GaAs-Substrat, welches in einem runden vergossenen Kunststoffgehäuse untergebracht ist und vier Anschlußfahnen besitzt.

Bei Betrieb des Sensors mit einem konstanten Steuerstrom ist die abgegebene Hallspannung direkt proportional zu einem auf den Sensor einwirkenden Magnetfeld. Dieser Sensor zeichnet sich durch eine hohe Induktionsempfindlichkeit bei sehr geringem Temperaturgang aus.

Die aktive Fläche des Hallgenerators beträgt etwa 0,2 × 0,2 mm. Sie liegt ca. 0,35 mm unter der Kunststoffoberfläche der Vorderseite und ist konzentrisch zur Justierprägung auf der Rückseite. Bezüglich Hall- und Steueranschlüssen ist dieser Hallgenerator elektrisch symmetrisch.

Der Positions-Sensor KSY 10 eignet sich besonders zur Positionserfassung von Magneten bzw. von weichmagnetischem Material, wenn der Sensor selbst auf einen Magneten montiert ist.


Typische Anwendungen:


- Abfrage der Drehzahl von Zahnrädern
- Abfrage der Position von Zahnstangen
- Abfrage des Membranweges in Druckdosen
- Magnetfeldmessung an Dauermagneten
- Magnetfeldmessung im Magnetjoch zur Strombestimmung
- Magnetfeldmessung im Gleichstrommotor zur kontaktlosen Kommutierung

Wesentliche Merkmale:

- Hohe Empfindlichkeit
- Hohe Betriebstemperatur
- Hohe Linearität
- Kleine Nullspannung
- Kleiner TK von Empfindlichkeit und Innenwiderstand
- Kunststoffgespritztes Miniaturgehäuse

Тур	Bestellnummer
KSY10	Q62705-K38

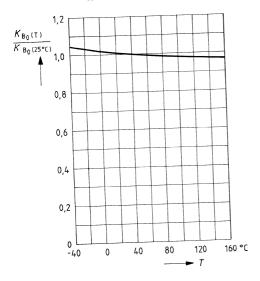
Hallspannungsanschlüsse 1/2 (3/4) Steuerstromanschlüsse 3/4 (1/2)

Grenzdaten

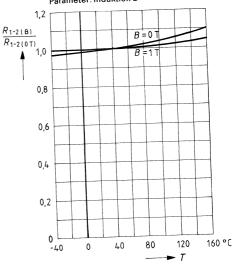
Max. zul. Betriebstemperatur Max. zul. Lagertemperatur

Max. zul. Steuerstrom

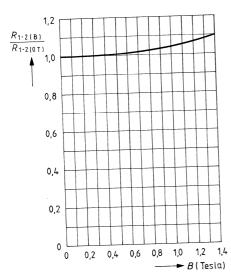
$$egin{array}{c|c} -40 \, \mathrm{bis} + 150^1 & \circ 0 \\ -50 \, \mathrm{bis} + 160 & \circ 0 \\ 7 & \mathrm{m} \end{array}$$


¹⁾ Höhere Betriebstemperatur auf Anfrage

$\textbf{Kenndaten} \, (\textit{T}_{U} = 25^{\circ}\,\text{C}, \text{Hallspannungsanschlu} \&\, 1/2, \text{Steuerstromanschlu} \&\, 3/4)$

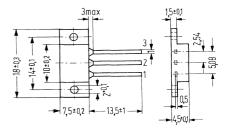

Nennstrom	I_{1n}	5	l mA
Leerlaufempfindlichkeit	K_{B0}	200 ± 30	V/AT
Leerlaufhallspannung bei I_{1n} und $B = 0,1$ T	U_{20}	100 ± 15	mV
Ohmsche Nullspannung bei I_{1n} und $B = 0$ T	U_{R0}	$\leq \pm 25^{1}$)	mV
Linearität der Hallspannung für		,	
$B = 0 \operatorname{bis} 0.5 T$	F _{L 0.5T}	≤ ±0.2	%
B = 0 bis 1 T	F _{L 1T}	≦ ±0,7	%
Hall- und steuerseitiger Innenwiderstand	R_{10} ; R_{20}	1170 ± 200	Ω
Temperaturkoeffizient der Leerlaufhallspannung			
bei B = 1 Tund			
$T = 25^{\circ}C$	β 25° C	-0,06	%/K
$T = 100^{\circ} C$	β100° C	-0,04	%/K
$T = 150^{\circ} C$	β 150° C	-0.04	%/K
Temperaturkoeffizient des Innenwiderstandes		,	,
bei $B = 0$ T und			
$T = 25^{\circ} C$	α25°C.0T	+0.05	%/K
$T = 100^{\circ} C$	α100°C,0T	+0,07	%/K
$T = 150^{\circ} C$	α 150° C, 0 T	+0,08	%/K
und bei B = 1 T und	·	, ,	,
$T = 25^{\circ} C$	α 25° C, 1 T	+0,03	%/K
$T = 100^{\circ} C$	α100°C,1T	+0,06	%/K
$T = 150^{\circ}C$	α 150° C, 1 T	+0,07	%/K

¹⁾ Nullspannungsselektion auf Anfrage


Temperaturabhängigkeit der Leerlaufempfindlichkeit $K_{\rm B0}$ normiert auf $K_{\rm B0}$ bei $T=25^{\circ}$ C

Temperaturabhängigkeit des Innenwiderstandes R_{1-2} normiert auf R_{1-2} bei $T=25^{\circ}$ C Parameter: Induktion B

Magnetfeldabhängigkeit des Innenwiderstandes R_{1-2} normiert auf R_{1-2} bei B=0 T


5.3.2. Feldplattensensoren-Typenübersicht mit Eckdaten bei $T_{\rm U}=25\,^{\circ}{\rm C}$

Тур	Gesamt- wider- stand R_{1-3} (Ω)	Toleranzwert $R_{1-3} ext{-Tol}.$ (Ω)	Mitten- symmetrie M (%)	Nullspan- nung <i>U</i> A0 (mV)	Leerlauf- Ausgangs- spannung <i>U</i> ASS (mV)	Betriebs- spannung bei $T_G = 25^{\circ}C$ U_B (V)	Seite
FP 200 L 100 FP 201 L 100 FP 210 D 250 FP 210 L 100 FP 211 D 155	1000 1000 1000 300 400	-300/+400 -300+400 ±300 ±80 -120/+240	< 10 < 10 < 10 < 10	≤ 130 ≤ 130 ≤ 130 ≤ 130 ≤ 64	> 2200 > 2200 > 850 > 850 ≥ 400	10 10 7,5 7,5 5,5	129 131 135 140 145
FP212 D 250 FP212 L 100	1000 300	±300 ±80	≦ 10 ≦ 10	≦ 130 ≦ 130	≥ 850 ≥ 850	10 10	149 153

Nicht für Neuentwicklung!

Der Feldplatten-Differential-Fühler FP 200 L 100 ist aus zwei magnetisch vorgespannten Feldplatten aufgebaut, die aus L-Material bestehen und einen Grundwiderstand – ohne Vorspannung – von je etwa 125 Ω besitzen. Beide sind als Spannungsteiler geschaltet und zum Schutz gegen mechanische Beanspruchungen in ein Alugehäuse eingebaut und vergossen. Dieser magnetisch steuerbare Geber kann als richtungsabhängiger kontaktloser Schalter eingesetzt werden. Er besitzt dabei im linearen Bereich eine Spannungsänderung von etwa 1,3 V/mm.

Тур	Bestellnummer
FP 200 L 100	Q65200-L100-W

Gewicht etwa 1,4 g

Maße in mm

Grenzdaten ($T_G = 25^{\circ} C$)

Betriebsspannung	$U_{\rm B}^{1}$)	10	V
Isolationsspannung zwischen System und Gehäuse	U_{l}	100	V
Elektr. Belastung des Einzelsystems (R_{1-2} bzw. R_{2-3})	P_{tot}	400	mW
Gesamtsystem (R_{1-3})	P_{tot}	600	mW
Betriebstemperatur	Τ	-25 bis + 100	°C
Lagertemperatur	T_{S}	- 25 bis + 110	°C
Wärmeleitwert:			
System-Luft	G_{thU}	≥ 5	mW/K
System – Gehäuse	G_{thG}	≧ 10	mW/K

Kenndaten ($T_U = 25^{\circ} C$)

Gesamtwiderstand (Luftspalt $\delta = \infty$)	R_{1-3}	1000	Ω
Toleranz von R ₁₋₃	R_{1-3} -Tol.	+400	Ω
		-300	İ
Leerlauf-Ausgangsspannung ²) (Stirnflächenfluß			
$\Phi_{\rm st} = 2\mu {\rm Wb}$; $\delta = 0.5{\rm mm}$, $U_{\rm B} = 5{\rm V}$)	U_{ASS}	2,5 (> 2,2)	V
Grenzfrequenz von UASS ²)	f_{g}	2,5 (> 2,2) ≥ 7	KHz
Mittensymmetrie ³)	M	< 10	%
Nullspannung ⁴) ($\Phi_{st} = 0$; $U_B = 5 \text{ V}$)	U_{A0}	≦ 130	mV

¹⁾ entsprechend Diagramm $U_B = f(T)$

²⁾ entsprechend Meßschaltung und Meßanordnung in Abb. 2

³⁾ $M = \frac{R_1 - R_2}{R_1} \cdot 100\% \text{ für } R_1 > R_2$

⁴⁾ entsprechend Meßschaltung in Abb. 2

Nicht für Neuentwicklung!

Die Ansteuerung dieses Gebersystems erfolgt mittels eines Permanentmagneten. Bei der in Abb. 1 gewählten Anordnung verstärkt der magnetische Fluß $\Phi_{\rm st}$ des Steuermagneten den durch die magnetische Vorspannung erzeugten Fluß $\Phi_{\rm v}$ der rechten Feldplatte (Anschluß 2–3) und schwächt den der linken Feldplatte (Anschluß 1–2). Dadurch erhöht sich der Widerstandswert der FP 2–3, während sich der der FP 1–2 verringert. Wird der Steuermagnet nach rechts bewegt, so kehrt sich der Vorgang um.

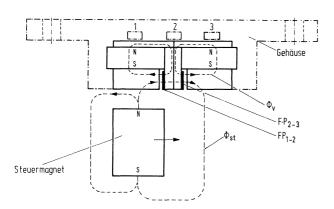
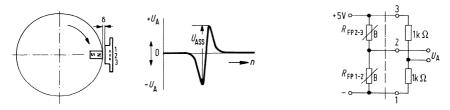
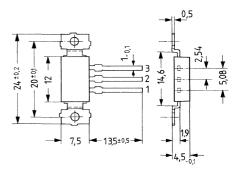



Abb. 1:
Ansteuerung des Fühlers mit einem Stabmagneten

Die Anordnung zur Messung der Ausgangsspannung ist in Abb. 2 dargestellt. Die Messung wird mit einem Steuermagneten Alnico 450 (\varnothing 4 mm, 6 mm lang, Stirnflächenfluß = 2 μ Wb) durchgeführt.



Eine größere Spannungssteilheit ergibt sich bei Ansteuerung mit einem U-Magneten.

Abb. 2

Der Feldplatten-Differential-Fühler FP 201 L 100 ist aus zwei magnetisch vorgespannten Feldplatten aufgebaut, die aus L-Material bestehen und einen Grundwiderstand – ohne Vorspannung – von je etwa 125 Ω besitzen. Beide sind als Spannungsteiler geschaltet und zum Schutz gegen mechanische Beanspruchungen kunststoffumpreßt. Dieser magnetisch steuerbare Geber kann als richtungsabhängiger kontaktloser Schalter eingesetzt werden. Er besitzt dabei im linearen Bereich eine Spannungsänderung von etwa 1,3 V/mm.

Тур		Bestellnummer
FP 201 I 100	Τ	O65210-L 0101

Gewicht etwa 1,4 g

Maße in mm

Grenzdaten ($T_G = 25^\circ$)

Detriebenennen	// 1\	1.10	1. 1/
Betriebsspannung	$U_{\rm B}^{\rm 1})$	10	V
Isolationsspannung zwischen System und Gehäuse	U_{l}	100	V
elektr. Belastung des Einzelsystems (R_{1-2} bzw. R_{2-3})	P_{tot}	400	mW
Gesamtsystem (R_{1-3})	P_{tot}	600	mW
Betriebstemperatur	T	-25 bis + 100	°C
Lagertemperatur	$ au_{S}$	- 25 bis + 110	°C
Wärmeleitwert:			
System-Luft	G_{thU}	≥ 5	mW/K
System – Gehäuse	G_{thG}	≥ 10	mW/K
		·	•

Kenndaten ($T_U = 25^{\circ}$ C)			
Gesamtwiderstand (Luftspalt $\delta = \infty$)	R ₁₋₃	1000	Ω
Toleranz von R_{1-3}	R_{1-3} -Tol.		Ω
Landauf Augustus 2)/Chimfliah anfluß		-300	
Leerlauf-Ausgangsspannung²) (Stirnflächenfluß			1
$\Phi_{\rm st} = 2\mu { m Wb}$; $\delta = 0.5{ m mm}$, $U_{ m B} = 5{ m V}$)	U_{ASS}	2,5 (> 2,2) > 7	V
Grenzfrequenz von U_{ASS}^2)	f_{g}	> 7	KHz
Mittensymmetrie ³)	M	< 10	%
Nullspannung ⁴) ($\Phi_{st} = 0$; $U_B = 5 V$)	U_{A0}	≦ 130	mV

¹⁾ entsprechend Diagramm $U_B = f(T)$

²⁾ entsprechend Meßschaltung und Meßanordnung in Abb. 2

³⁾ $M = \frac{R_1 - R_2}{R_1} \cdot 100\% \text{ für } R_1 > R_2$

⁴⁾ entsprechend Meßschaltung in Abb. 2

Die Ansteuerung dieses Gebersystems erfolgt mittels eines Permanentmagneten. Bei der in Abb. 1 gewählten Anordnung verstärkt der magnetische Fluß \mathcal{O}_{st} des Steuermagneten den durch die magnetische Vorspannung erzeugten Fluß \mathcal{O}_{v} der rechten Feldplatte (Anschluß 2–3) und schwächt den der linken Feldplatte (Anschluß 1–2). Dadurch erhöht sich der Widerstandswert der FP 2–3, während sich der der FP 1–2 verringert. Wird der Steuermagnet nach rechts bewegt, so kehrt sich der Vorgang um.

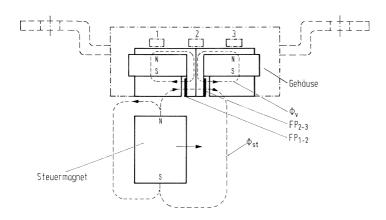
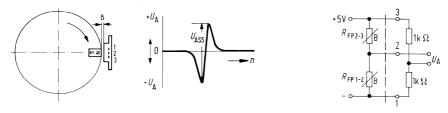
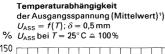
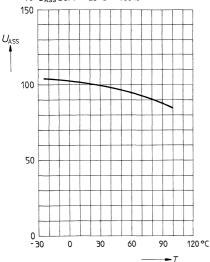
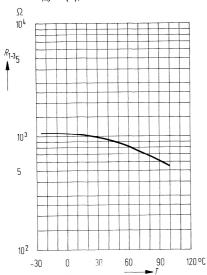


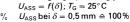
Abb. 1: Ansteuerung des Fühlers mit einem Stabmagneten

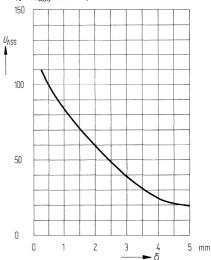
Die Anordnung zur Messung der Ausgangsspannung ist in Abb. 2 dargestellt. Die Messung wird mit einem Steuermagneten Alnico 450 (\varnothing 4 mm, 6 mm lang, Stirnflächenfluß = 2 μ Wb) durchgeführt.

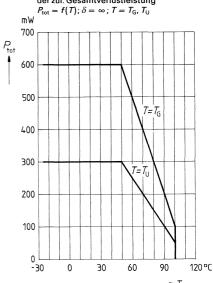





Abb. 2

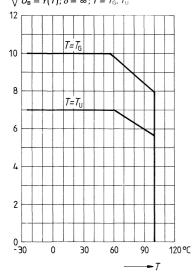
Eine größere Spannungssteilheit ergibt sich bei Ansteuerung mit einem U-Magneten.



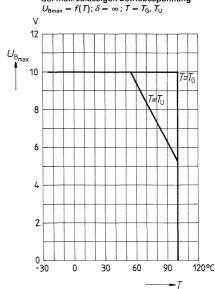

Temperaturabhängigkeit des Gesamtwiderstandes (Mittelwert) $R_{1-3} = f(T); \delta = \infty$


1) gemessen mit Anordnung entsprechend Abb. 2

Luftspaltabhängigkeit der Ausgangsspannung (Mittelwert)¹)

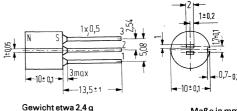



Temperaturabhängigkeit der zul. Gesamtverlustleistung



Temperaturabhängigkeit der empfohlenen Betriebsspannung für Systemübertemperatur < 30 K \vee $U_{\rm B} = f(T); \delta = \infty; T = T_{\rm G}, T_{\rm U}$

 $U_{\rm B}$



Der FP 210 D 250 besteht aus 2 Feldplatten aus D-Material, die ohne magnetische Vorspannung einen Grundwiderstand von je etwa 250 Ω besitzen. Beide sind auf einem gemeinsamen Permanentmagneten befestigt und in Reihe geschaltet, so daß sich infolge der magnetischen Vorspannung der Widerstand des Gesamtsystems auf 1 k Ω bei einer Toleranz von $\pm 300~\Omega$ erhöht. Zum Schutz gegen mechanische Beanspruchungen ist das Gebersystem in ein unmagnetisches Gehäuse eingebaut und vergossen.

Тур	Bestellnummer
FP 210 D 250-2	Q65210-D250-W1

Maße in mm

Grenzdaten

Betriebstemperatur	T	-25 bis +100	°C °C
Lagertemperatur	T_{S}	-25 bis +110	1 -
Betriebsspannung ($T_U = 25^{\circ} \text{C})^1$)	U_{B}	7,5	V
elektr. Belastung ($T_U = 25^{\circ} \text{C}$)			
des einzelnen Widerstandes (R_{1-2} bzw. R_{2-3})	$P_{ m tot}$	250	mW
Isolationsspannung zwischen System und Gehäuse	Ü	100	lv
	G_{thU}	> 5	mW/K
Wärmeleitwert	OthU	/ / 3	11144/12
Kenndaten ($T_U = 25^{\circ} \text{C}$)			
Gesamtwiderstand des Gebers (Luftspalt $\delta = \infty$)	R_{1-3}	1000	Ω
Toleranz von R_{1-3}	R_{1-3} -Tol.	±300	Ω
Ausgangsspannung ²)			
$(R_a = 1 \text{ M}\Omega; U_B = 5 \text{ V}; \delta = 0.2 \text{ mm})$	U_{ASS}	> 0.85	lv
$(n_a = 1)$ $v_1 v_2 v_3 v_4 v_4 v_5 v_6 v_6 v_6 v_6 v_6 v_6 v_6 v_6 v_6 v_6$	OASS	> 17	% <i>U</i> B
			1
Mittensymmetrie (Luftspalt $\delta = \infty$) ³)	М	< 10	%
Nullspannung ($\delta = \infty$; $U_B = 5V)^4$)	U_{A0}	≦ 130	mV
Grenzfrequenz	f	≥ 20	kHz
OTOTIETT OQUOTIE		. —	•

¹⁾ entsprechend Diagramm $U_B = f(T)$

²⁾ entsprechend Meßschaltung in Abb. 2 und Meßanordnung in Abb. 1

 $[\]frac{R_1 - R_2}{R_1} \cdot 100\% \, \text{für} \, R_1 > R_2$

⁴⁾ entsprechend Meßschaltung in Abb. 2

Meßanordnungen

Wird diesem Gebersystem ein weichmagnetischer Werkstoff angenähert, so wird eine Widerstandsänderung der Feldplatten erzielt. Dabei bewirkt die Reihenschaltung der Feldplatten eine weitgehende Temperaturkompensation.

1. Drehzahlerfassung

Besonders geeignet ist dieses Fühlersystem zur digitalen Drehzahlmessung, wobei ein aus weichmagnetischem Werkstoff bestehendes, an der zu überwachenden Welle angebrachtes Zahnrad mit dem FP 210 D 250 abgetastet wird. Die Zahnteilung soll dem doppelten Mittenabstand der Feldplatten entsprechen (siehe Abb. 1).

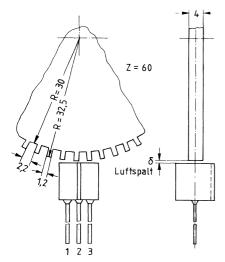


Abb. 1: Schematische Darstellung der Abtastung eines Zahnrades mit einem FP 210 D 250

Zur Messung der Ausgangsspannung werden die Feldplatten durch 2 zusätzliche Widerstände zu einer Brückenschaltung ergänzt. Die Signalspannung kann als Brückenspannung U_A erfaßt werden.

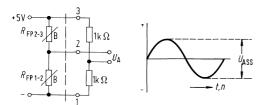
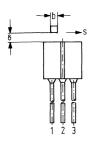



Abb. 2: Ergänzung des FP-Fühlers zu einer Vollbrücke

2. Linearer Weggeber

Zum Umsetzen kleiner Wegstrecken in proportionale elektrische Signale wird ein weichmagnetisches Eisenteil definierter Breite (z. B. $b=2.3\,\mathrm{mm}$) an der Stirnseite des Fühlers vorbeibewegt. Proportional auswertbar sind Wegstrecken bis zu 1,5 mm. Das sinusähnliche Ausgangssignal bietet im Bereich des Nulldurchgangs eine dem Weg proportionale Spannung (Abb. 3).

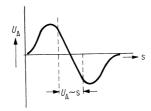
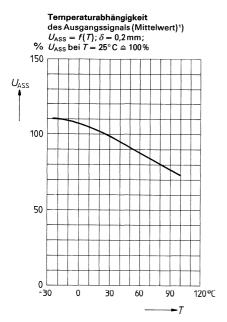
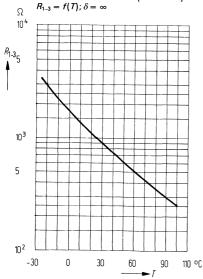
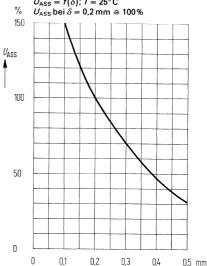
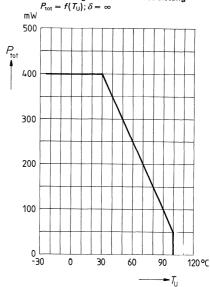
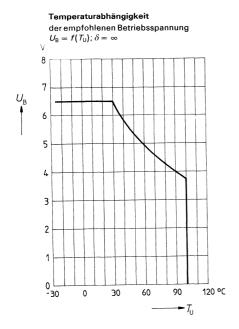




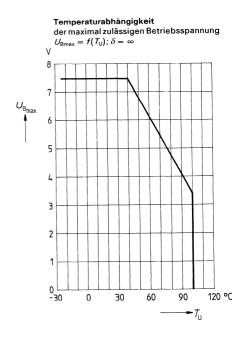
Abb. 3



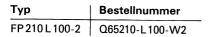
Temperaturabhängigkeit des Gesamtwiderstandes (Mittelwert)

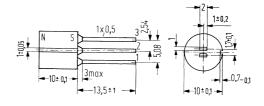

¹⁾ gemessen mit einem Zahnrad entsprechend Abb. 1


Luftspaltabhängigkeit des Ausgangssignals (Mittelwert)¹) $U_{ASS} = f(\delta)$; $T = 25^{\circ}$ C



Temperaturabhängigkeit der zulässigen Gesamtverlustleistung $P_{rr} = f(T_r) \cdot \delta = \infty$


δ,



Der FP 210 L 100 besteht aus 2 Feldplatten aus L-Material, die ohne magnetische Vorspannung einen Grundwiderstand von je ca. 100 Ω besitzen. Beide sind auf einem gemeinsamen Permanentmagneten befestigt und in Reihe geschaltet, so daß sich infolge der magnetischen Vorspannung der Widerstand des Gesamtsystems auf 300 Ω bei einer Toleranz von $\pm 80~\Omega$ erhöht. Zum Schutz gegen mechanische Beanspruchung ist das Gebersystem in ein unmagnetisches Gehäuse eingebaut und vergossen.

Gewicht etwa 2,4 g

Maße in mm

Grenzdaten

Betriebstemperatur Lagertemperatur	T Ts	-25 bis +110 -25 bis +110	°C °C
Betriebsspannung ($T_G = 25^{\circ} \text{C}$) ¹)	U _R	7.5	V
elektr. Belastung ($T_G = 25^{\circ} \text{C}$)	OB	7,5	\ '
des einzelnen Widerstandes $(R_{1-2}$ bzw. $R_{2-3})$	$P_{ m tot}$	250	mW
Isolationsspannung zwischen System und Gehäuse	Uı	100	V
Wärmeleitwert	G_{thU}	> 5	mW/K

Kenndaten

Gesamtwiderstand des Gebers (Luftspalt $\delta = \infty$)	R_{1-3}	300	ΙΩ
Toleranz von R ₁₋₃	R_{1-3} -Tol.	±80	Ω
Ausgangsspannung ²)	, 0		
$(R_a = 1 \text{ M}\Omega; U_B = 5 \text{ V}; \delta = 0.2 \text{ mm})$	U_{ASS}	> 0,85 > 17	V
		> 17	% <i>U</i> B
Mittensymmetrie (Luftspalt $\delta = \infty$) ³)	M	< 10	%
Nullspannung ($\delta = \infty$; $U_B = 5 \text{ V})^4$)	U_{A0}	≦ 130	mV
Grenzfrequenz	f	≥ 20	kHz

¹⁾ entsprechend Diagramm $U_B = f(T)$

²) entsprechend Meßschaltung in Abb. 2 und Meßanordnung in Abb. 1

³⁾ $M = \frac{R_1 - R_2}{R} \cdot 100\% \text{ für } R_1 > R_2$

⁴⁾ entsprechend Meßschaltung in Abb. 2

Meßanordnungen

Wird diesem Gebersystem ein weichmagnetischer Werkstoff angenähert, so wird eine Widerstandsänderung der Feldplatten erzielt. Dabei bewirkt die Reihenschaltung der Feldplatten eine weitgehende Temperaturkompensation.

1. Drehzahlerfassung

Besonders geeignet ist dieses Fühlersystem zur digitalen Drehzahlmessung, wobei ein aus weichmagnetischem Werkstoff bestehendes, an der zu überwachenden Welle angebrachtes Zahnrad mit dem FP 210 L 100 abgetastet wird. Die Zahnteilung soll dem doppelten Mittenabstand der Feldplatten entsprechen (siehe Abb. 1).

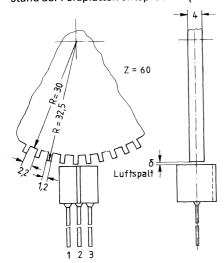


Abb. 1: Schematische Darstellung der Abtastung eines Zahnrades mit einem FP 210 L 100

Zur Messung der Ausgangsspannung werden die Feldplatten durch 2 zusätzliche Widerstände zu einer Brückenschaltung ergänzt. Die Signalspannung kann als Brückenspannung U_A erfaßt werden.

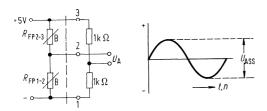
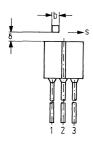



Abb. 2: Ergänzung des FP-Fühlers zu einer Vollbrücke

2. Linearer Weggeber

Zum Umsetzen kleiner Wegstrecken in proportionale elektrische Signale wird ein weichmagnetisches Eisenteil definierter Breite (z. B. $b=2.3\,\mathrm{mm}$) an der Stirnseite des Fühlers vorbeibewegt. Proportional auswertbar sind Wegstrecken bis zu 1,5 mm. Das sinusähnliche Ausgangssignal bietet im Bereich des Nulldurchgangs eine dem Weg proportionale Spannung (Abb. 3).

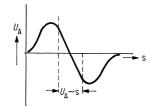
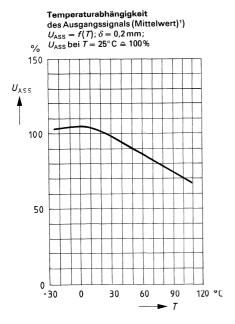
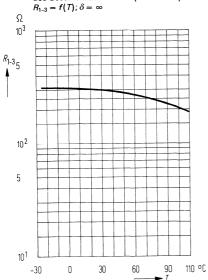
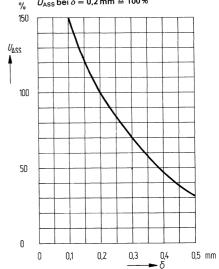
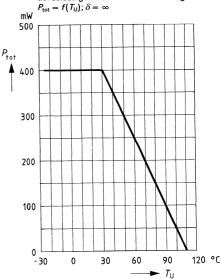
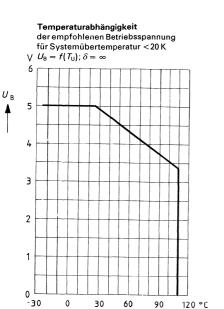




Abb. 3

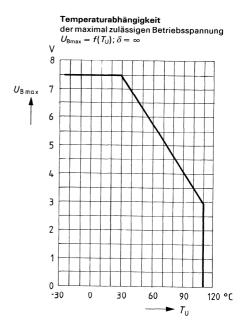


Temperaturabhängigkeit des Gesamtwiderstandes (Mittelwert) $R_{\bullet, \alpha} = f(T)$: $\delta = \infty$



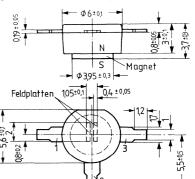

¹⁾ gemessen mit einem Zahnrad entsprechend Abb. 1

Luftspaltabhängigkeit des Ausgangssignals (Mittelwert) ') $U_{\rm ASS} = f(\delta)$; $T = 25\,^{\circ}{\rm C}$ $U_{\rm ASS}$ bei $\delta = 0.2$ mm $\triangleq 100\,\%$



Temperaturabhängigkeit der zulässigen Gesamtverlustleistung $P_{\text{ext}} = f(T_0): \delta = \infty$

-**►** T_U



Der Feldplatten-Differential-Fühler FP 211 D 155 besteht aus einer Differential-Feldplatte aus D-Material, welche auf einen Weicheisenträger montiert ist. Der Grundwiderstand ohne magnetische Vorspannung beträgt je rund 155 Ohm. Die tablettenförmige Einheit ist kunststoffumpreßt und hat seitlich drei Anschlußfahnen. Die magnetische Vorspannung erzeugt ein auf der Unterseite des Fühlerkopfes montierter Permanentmagnet.

Der FP 211 D 155 ist auch ohne Magnet lieferbar (FP 211 D 155-3).

Das Fühlerelement eignet sich zum Umsetzen kleiner Wegstrecken in elektrische Signale, zum Erfassen von Drehzahl und Drehsinn von Zahnrädern, als exakter Positionsgeber usw. Die Signalamplitude ist unabhängig von der Geschwindigkeit des vorbeibewegten Eisenteils.

Тур	Bestellnummer
FP 211 D 155-2	Q65211-D 1552 Q65211-D 1553
FP 211 D 155-3	Q65211-D 1553

Gewicht etwa 0,35 g

Maße in mm

Grenzdaten

Betriebstemperatur	Τ	−25 bis +100	°C
Lagertemperatur	T_{S}	- 25 bis + 110	°C
Isolationsspannung zwischen System und Träger	U_{l}	60	V
Betriebsspannung ($T_G = 25^{\circ} C$)	$U_{\rm B}^{\rm 1})$	5,5	V
elektrische Belastung			
$(T_{\rm G}=25^{\circ}{\rm C})$	$P_{ m tot}$	300	mW
$(T_{U} = 25^{\circ}C)$	$P_{ m tot}$	150	mW
Wärmeleitwert	G_{thU}	2,5	mW/K
	G_{thG}	5	mW/K

Kenndaten ($T_U = 25^{\circ}$ C)

Gesamtwiderstand (Luftspalt $\delta = \infty$)	R_{1-3}	400	Ω
Toleranz von R ₁₋₃	R_{1-3} -Tol.	-120/+240	Ω
Mittensymmetrie	<i>M</i> 2)	≦ 5	%
Nullspannung ($U_B = 5V$; $\delta = \infty$)	U_{A0}^{3})	≦64	mV
Leerlaufausgangsspannung ($U_B = 5 \text{ V}; \delta = 0.2 \text{ mm}$)	$U_{\rm ASS}^4$)	≥400	mV
		≧8	% <i>U</i> B
Granzfraguenz	f	>20	kHz

1) entsprechend Diagramm $U_B = f(T)$

²) $M = \frac{R_1 - R_2}{R_1} \times 100\% \text{ für } R_1 > R_2$

³⁾ entsprechend Meßschaltung in Abb. 2

⁴⁾ entsprechend Meßschaltung in Abb. 2 und Meßanordnung Abb. 1

Meßanordnungen

Wird diesem Fühlersystem ein weichmagnetischer Werkstoff angenähert, so stellt sich eine Widerstandsänderung der Feldplatten ein.

1. Drehzahlerfassung

Zur digitalen Drehzahlmessung steuert ein aus weichmagnetischem Werkstoff bestehendes Zahnrad den Feldplattenfühler an.

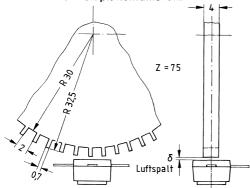
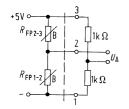
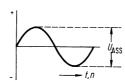
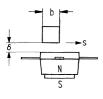
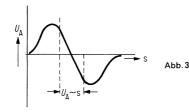
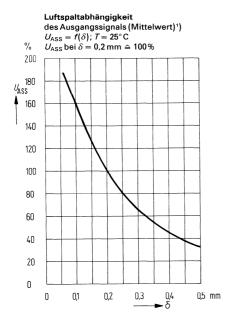



Abb. 1 Schematische Darstellung der Abtastung eines Zahnrades mit einem FP 211 D 155

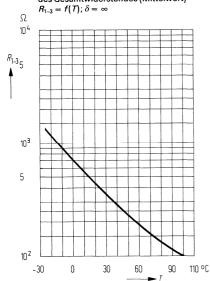
Zur Messung der Ausgangsspannung wird die Differential-Feldplatte durch zwei Widerstände zu einer Brückenschaltung ergänzt.

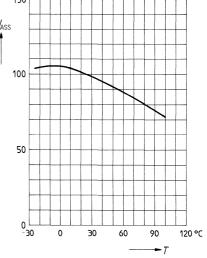
Die Ausgangsspannung kann als Brückenspannung U_A erfaßt werden.

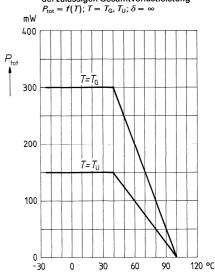





Abb. 2

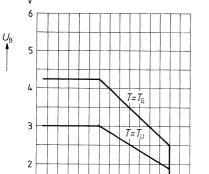
2. Linearer Weggeber


Zum Umsetzen kleiner Wegstrecken in proportionale elektrische Signale wird ein weichmagnetisches Eisenteil definierter Breite (z. B. $b=1\,\mathrm{mm}$) an der Stirnseite des Fühlers vorbeibewegt. Proportional auswertbar sind Wegstrecken bis zu 0,8 mm. Das sinusförmige Ausgangssignal bietet im Bereich des Nulldurchgangs eine dem Weg proportionale Spannung.


Temperaturabhängigkeit des Gesamtwiderstandes (Mittelwert)


1) gemessen mit einem Zahnrad entsprechend Abb. 1

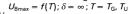
Temperaturabhängigkeit des Ausgangssignals (Mittelwert)1)

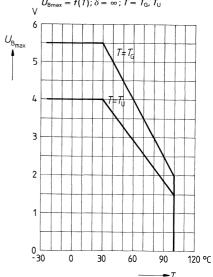

Temperaturabhängigkeit der zulässigen Gesamtverlustleistung

Temperaturabhängigkeit

der empfohlenen Betriebsspannung

$$U_{\rm B}=f(T); \delta=\infty; T=T_{\rm G}, T_{\rm U}$$


30


60

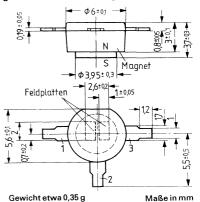
90

120 °C

Temperaturabhängigkeit der maximal zulässigen Betriebsspannung $U_{\mathrm{Bmax}} = f(T); \, \delta = \infty; \, T = T_{\mathrm{G}}, \, T_{\mathrm{U}}$

0 [

Der Feldplatten-Differential-Fühler FP 212 D 250 besteht aus zwei Feldplatten aus D-Material, welche auf einen Weicheisen-Polschuh montiert sind. Die tablettenförmige Einheit ist kunststoffumpreßt und hat seitlich drei Anschlußfahnen.


Der Grundwiderstand des Gesamtsystems beträgt $2\times 250~\Omega$. An der Unterseite des Fühlerkopfes ist ein Permanentmagnet befestigt, der die magnetische Vorspannung liefert.

Der FP 212 D 250 ist auch ohne Magnet lieferbar (FP 212 D 250-3).

Das Fühlerelement eignet sich sowohl zum Aufnehmen von Drehzahlen und zur exakten Positionserfassung bewegter Teile als auch zum Umsetzen kleiner Wegstrecken in proportionale elektrische Signale.

Die Signalamplitude ist unabhängig von der Geschwindigkeit des vorbeibewegten Eisenteils.

Тур	Bestellnummer
FP 212 D 250-2	Q65212-D 2502
	Q65212-D 2503

Grenzdaten

Betriebstemperatur
Lagertemperatur
Isolationsspannung zwischen System und Träger
Betriebsspannung ($T_G = 25^{\circ} C$)
elektrische Belastung
$(T_{\rm G}=25^{\circ}{\rm C})$
$(T_{U} = 25^{\circ}C)$
Wärmeleitwert

T	-25 bis + 100	°C
T _S	- 25 bis + 110	°C
U_{l}	60	V
$U_{\rm B}^{1}$)	10	V

$U_{\rm B}^{\rm 1}$)	10	v
$egin{aligned} P_{ ext{tot}} \ P_{ ext{tot}} \ G_{ ext{thG}} \end{aligned}$	700 300 ≥ 4 ≥ 10	mW mW/K mW/K

Kenndaten ($T_U = 25^{\circ} C$)

Gesamtwiderstand (Luftspalt $\delta = \infty$)
Toleranz von R_{1-3}
Mittensymmetrie ($\delta = \infty$)
Nullspannung ($U_B = 5V$; $\delta = \infty$)
Leerlaufausgangsspannung ($U_B = 5 \text{ V}$; $\delta = 0.2 \text{ mm}$)

R_{1-3}	1000	Ω
R_{1-3} -Tol.	± 300	Ω
M^2)	≦ 10	%
U_{A0}^{3})	≦130	mV
$U_{\rm ASS}^4$)	≧0,85	V
	≧17	% <i>U</i> B
f	≥ 20	kHz

Grenzfrequenz

1)	entsprec	hend D	iagramm	$U_{\rm B} =$	f(T,

²) $M = \frac{R_1 - R_2}{R} \times 100\% \text{ für } R_1 > R_2$

³⁾ entsprechend Meßschaltung in Abb. 2

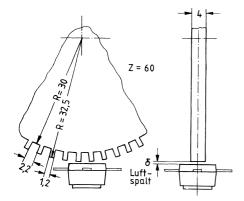
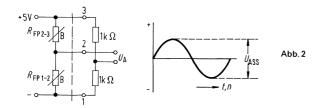
⁴⁾ entsprechend Meßschaltung in Abb. 2 und Meßanordnung in Abb. 1

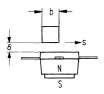
Meßanordnungen

Wird diesem Fühler stirnseitig ein weichmagnetischer Werkstoff angenähert, so stellt sich eine Widerstandsänderung der Feldplatten ein.

1. Drehzahlerfassung

Zur digitalen Drehzahlmessung steuert ein aus weichmagnetischem Werkstoff bestehendes Zahnrad den Feldplattenfühler an.

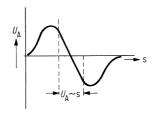
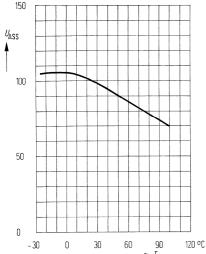



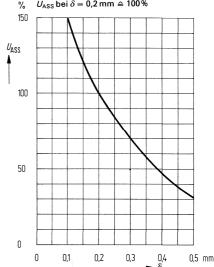

Abb. 1
Schematische Darstellung
der Abtastung eines Zahnrades mit einem FP 212 D 250

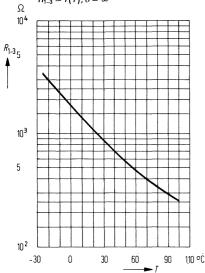
Zur Messung der Ausgangsspannung werden die beiden Feldplatten durch zwei Widerstände zu einer Brückenschaltung ergänzt. Die Ausgangsspannung kann als Brückenspannung $U_{\rm A}$ erfaßt werden.

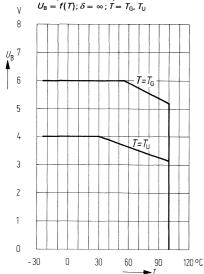
2. Linearer Weggeber

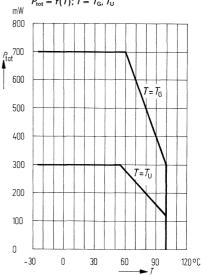
Zum Umsetzen kleiner Wegstrecken in proportionale elektrische Signale wird ein weichmagnetisches Eisenteil definierter Breite (z. B. $b=2,3\,\mathrm{mm}$) an der Stirnseite des Fühlers vorbeibewegt. Proportional auswertbar sind Wegstrecken bis zu 1,5 mm. Das sinusförmige Ausgangssignal bietet im Bereich des Nulldurchgangs eine dem Weg proportionale Spannung.

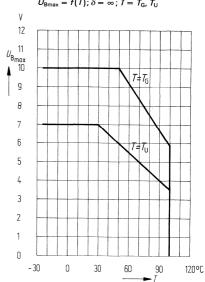




Abb. 3




Luftspaltabhängigkeit des Ausgangssignals (Mittelwert) ') $U_{\rm ASS} = f(\delta)$; $T = 25^{\circ} \, {\rm C}$ $U_{\rm ASS}$ bei $\delta = 0.2 \, {\rm mm} \cong 100 \, \%$

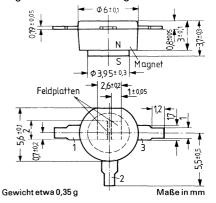

Temperaturabhängigkeit des Gesamtwiderstandes (Mittelwert) $R_{1-3} = f(T)$; $\delta = \infty$


Temperaturabhängigkeit der empfohlenen Betriebsspannung für Systemübertemperatur < 20 K

Temperaturabhängigkeit der zulässigen Gesamtverlustleistung $P_{\text{tot}} = f(T); T = T_{G}, T_{U}$

Temperaturabhängigkeit der maximal zulässigen Betriebsspannung $U_{\rm Bmax}=f(T); \delta=\infty; T=T_{\rm G}, T_{\rm U}$

Der Feldplatten-Differential-Fühler FP 212 L 100 besteht aus zwei Feldplatten aus L-Material, welche auf einen Weicheisen-Polschuh montiert sind. Die tablettenförmige Einheit ist kunststoffumpreßt und hat seitlich drei Anschlußfahnen.


Der Grundwiderstand des Gesamtsystems beträgt $2 \times 100 \Omega$. An der Unterseite des Fühlerkopfes ist ein Permanentmagnet befestigt, der die magnetische Vorspannung liefert.

Der FP 212 L 100 ist auch ohne Magnet lieferbar (FP 212 L 100-3).

Das Fühlerelement eignet sich sowohl zum Aufnehmen von Drehzahlen und zur exakten Positionserfassung bewegter Teile als auch zum Umsetzen kleiner Wegstrecken in proportionale elektrische Signale.

Die Signalamplitude ist unabhängig von der Geschwindigkeit des vorbeibewegten Eisenteils.

Тур	Bestellnummer
FP212L100-2	Q65212-L1002
FP 212 L 100-3	Q65212-L1003

Grenzdaten

Betriebstemperatur
Lagertemperatur
Isolationsspannung zwischen System und Träger
Betriebsspannung ($T_G = 25^{\circ} C$)
elektrische Belastung
$(T_{G} = 25^{\circ} C)$
$(T_{U} = 25^{\circ}C)$
Wärmeleitwert

T Ts	- 25 bis + 110 - 25 bis + 110	°C °C
$\widetilde{U_{l}}$	60	_
$U_{\rm B}^{\rm 1}$)	10	V
•	700	V
P_{tot}	300	mW
P_{tot}	≥ 4	mW
G_{thU}	≥ 10	mW/K
G_{thG}		mW/K

Kenndaten ($T_U = 25^{\circ} C$)

Gesamtwiderstand (Luftspalt $\delta = \infty$)	R_{1}
Toleranz von R ₁₋₃	R_{1}
Mittensymmetrie ($\delta = \infty$)	M:
Nullspannung $(U_B = 5V; \delta = \infty)$	$U_{\mathbb{A}}$
Leerlaufausgangsspannung ($U_B = 5 \text{ V}$; $\delta = 0.2 \text{ mm}$)	$U_{\mathbb{A}}$
· · · · · · · · · · · · · · · · · ·	

,	11-3-101.	_ UU	26
1	M^2)	≦10	%
($U_{A0}^{(3)}$	≦130	mV
- (UASS ⁴)	≥0,85	mV
		≧17	% <i>U</i> B
7	f	≥ 20	kHz

Grenzfrequenz

⁾ entsprechend Diagramm $U_B = f(T)$

²) $M = \frac{R_1 - R_2}{R_1} \times 100\% \, \text{für } R_1 > R_2$

³⁾ entsprechend Meßschaltung in Abb. 2

⁴⁾ entsprechend Meßschaltung in Abb. 2 und Meßanordnung in Abb. 1

Meßanordnungen

Wird diesem Fühler stirnseitig ein weichmagnetischer Werkstoff angenähert, so stellt sich eine Widerstandsänderung der Feldplatten ein.

1. Drehzahlerfassung

Zur digitalen Drehzahlmessung steuert ein aus weichmagnetischem Werkstoff bestehendes Zahnrad den Feldplattenfühler an.

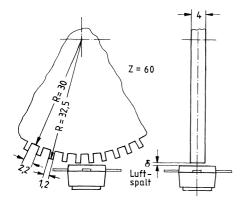
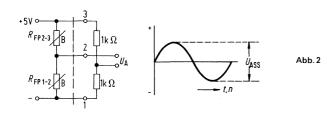
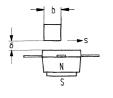
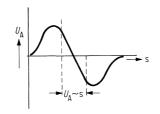
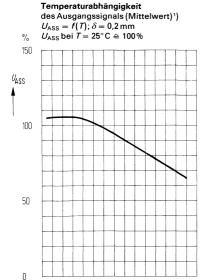



Abb. 1 Schematische Darstellung der Abtastung eines Zahnrades mit einem FP 212 L 100


Zur Messung der Ausgangsspannung werden die beiden Feldplatten durch zwei Widerstände zu einer Brückenschaltung ergänzt.

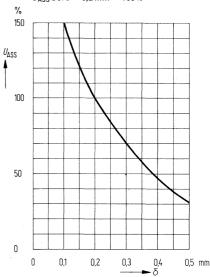

Die Ausgangsspannung kann als Brückenspannung U_A erfaßt werden.

2. Linearer Weggeber

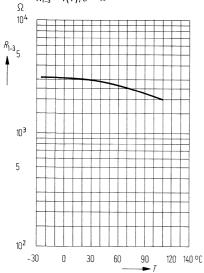

Zum Umsetzen kleiner Wegstrecken in proportionale elektrische Signale wird ein weichmagnetisches Eisenteil definierter Breite (z. B. $b=2,3\,\mathrm{mm}$) an der Stirnseite des Fühlers vorbeibewegt. Proportional auswertbar sind Wegstrecken bis zu 1,5 mm. Das sinusförmige Ausgangssignal bietet im Bereich des Nulldurchgangs eine dem Weg proportionale Spannung.

120 °C

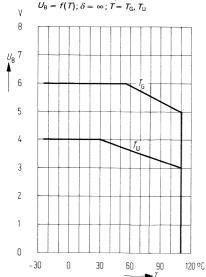
Abb. 3

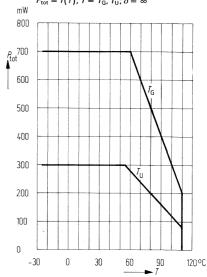

1) gemessen mit einem Zahnrad entsprechend Abb. 1

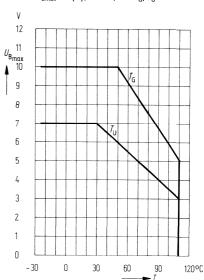
30


0

- 30


Luftspaltabhängigkeit des Ausgangssignals (Mittelwert)¹) $U_{\rm ASS} = f(\delta); T = 25^{\circ} {\rm C}$ $U_{\rm ASS}$ bei $\delta = 0,2~{\rm mm} \triangleq 100~{\rm \%}$


Temperaturabhängigkeit des Gesamtwiderstandes (Mittelwert) $R_{1-3} = f(T); \delta = \infty$


Temperaturabhängigkeit der empfohlenen Betriebsspannung für Systemübertemperatur < 20 K

Temperaturabhängigkeit der zulässigen Gesamtverlustleistung $P_{\text{tot}} = f(T); T = T_{\text{G}}, T_{\text{U}}; \delta = \infty$

Temperaturabhängigkeit der maximal zulässigen Betriebsspannung $U_{\rm Bmax}=f(T); \delta=\infty; T=T_{\rm G}, T_{\rm U}$

5.3.3 Kontaktlose Potentiometer – Typenübersicht mit Eckdaten bei $T_{\rm u}$ = 25° C 5.3.3.1 Potentiometer für 270° Drehwinkel

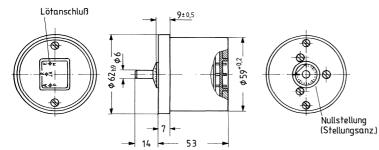
- ohne Verstärker

Тур	Gesamt- widerstand	Kleinster einstellbarer Rest- widerstand	Linearer Arbeitsbereich	Belastbar- keit	Linearitäts- fehler	Umgebungs- temperatur	Seite
	$R_{AE}(\Omega)$	$R_0(\Omega)$	φ(°)	$P_{\text{tot}}(W)$	F _L (%)	<i>T</i> ∪ (° C)	
FP 300 N 2 × 35	500	50-75	0-270	0,5 max.	± 1,75	-25 bis + 90	158
FP 300 N 2×35 -S1	500	50-75	0–270	0,5 max.	± 1	-25 bis + 90	158
$FP300N2\times35S2$	500	5075	0–270	0,5 max.	± 0,6	-25 bis + 90	158

- mit Verstärker

Тур	Betriebs- spannung U _B (V)	Ausgangs- strom (eingeprägt) I _A (mA)	Linearer Arbeitsbereich $\varphi(^{\circ})$	Bürde $R_{L}(\Omega)$	Linearitäts- fehler F _L (%)	Umgebungs- temperatur T _U (°C)	Seite
FP 300 N 2 × 35-S3	24	0–20	0–270	0650	± 1	- 25 bis + 75	1
FP 300 N 2 × 35-S4	24	0–20	0–270	0650	± 0,6	- 25 bis + 75	

5.3.3.2 Potentiometer für kleine Drehwinkel


- mit Verstärker

Тур	Betriebs- spannung U _B (V)	Ausgangs- strom (eingeprägt) $I_A(mA)$	Linearer Arbeitsbereich φ (°)	Bürde $R_{L}(\Omega)$	Linearitäts- fehler F _L (%)	Umgebungs- temperatur T _U (°C)	Seite
FP310 L 100-30	15	0-20	0-30	0-500	1	- 25 bis + 70	166
FP310 L 100-75	15	0-20	0-75	0-500	2	- 25 bis + 70	
FP311 L 100	15	0-20	0-25	0-500	1	- 25 bis + 70	

- ohne Verstärker

Тур	Gesamt- widerstand	Ausgangs- spannung für Dreh- winkelbe- reich	Linearer Arbeitsbereich	Lineari- tätsfehler	Max. Betriebstemperatur	Seite
	$R(\Omega)$	U _A (% U _B)	φ (°)	F _L (%)	<i>T</i> (°C)	
FP312L100 FP313L100	850 850	40 40	75 75	2,5 2,5	- 25 bis + 70 - 25 bis + 70	166 166

Тур	Bestellnummer
FP 300 N 2 × 35	Q65300-N 35-U
(Linearitätsfehler ± 1,75 %)	
FP 300 N 2 × 35-S1	Q65300-N 35-U1
(Linearitätsfehler ±1%)	
FP 300 N 2 × 35-S2	Q65300-N 35-U2
Mit Verstärker	
(Linearitätsfehler ±0,6%)	Q65300-N 35-U3
FP 300 N 2 × 35-S3	
(Linearitätsfehler ±1%)	
FP 300 N 2 × 35-S4	Q65300-N 35-U4
(Linearitätsfehler ±0,6%)	

Lötanschluß- bezeichnung			
mit	ohne		
Verstärk	er		
P	A		
JA	R		
M	E		

Gewicht etwa 290 g

Maße in mm

Anbauflansch wird mitgeliefert

Zu beachten ist, daß der Gesamtwiderstand R_{AE} des Potentiometers durch magnetischen Nebenschluß benachbarter Eisenteile beeinflußt wird. Diese Beeinflussung kann z. B. bei Einbau in eine Stahlblech-Frontplatte auftreten (vgl. unter "Technische Daten").

Das Feldplatten-Potentiometer hat keine mechanischen Anschläge. Die Potentiometerstellung kann über eine Skalenscheibe von 0 bis 270° abgelesen werden. Sie ist auf die Steuerwelle montiert und in 15°-Schritte unterteilt.

Der elektrische Anschluß erfolgt über drei Lötstifte auf der Rückseite.

Das FP 300 N 2×35 zeichnet sich gegenüber herkömmlichen Potentiometern durch folgende Eigenschaften aus:

Eigenschaften

Keine Widerstandsdrahtwicklung bzw. keine Widerstandsschicht

- Keine Schleifkontakte
- Keine Drehwinkelbegrenzung

Vorteile gegenüber konv. Potentiometern

- Unbegrenztes Auflösungsvermögen, d. h. keine sprunghaften Widerstandsänderungen; keine Korrosionsgefahr
- Keine Funkenbildung; keine mechanische Abnutzung.
- Keine Rutschkupplung

Applikationen

- Sollwertvorgabe
- Istwerterfassung f\u00fcr analoge Regelungen
- Rechen- und Überwachungsschaltungen
- Anzeigezwecke

Einbauhinweise

Beim Einbau ist darauf zu achten, daß die Steuerwelle nicht beschädigt wird. Eine mechanische Bearbeitung der Steuerwelle ist nicht zulässig. Beim Einsatz von Kupplungen ist darauf zu achten, daß bei deren Befestigung keine axialen Kräfte auftreten. Es empfiehlt sich eine spielfreie flexible Kupplung, z. B. Federscheiben-Kupplung, damit keine Verspannkräfte auftreten. Zulässige Kräfte an der Steuerwelle siehe "Mechanische Daten".

Technische Daten

Schutzart nach DIN 40040

Prüfspannung, Anschlüsse A, R, Egegen Masse Zul. Umgebungstemperatur bei Betrieb

bei Lagerung

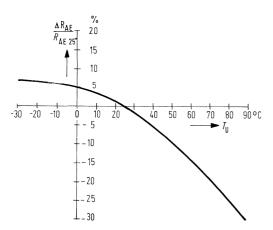
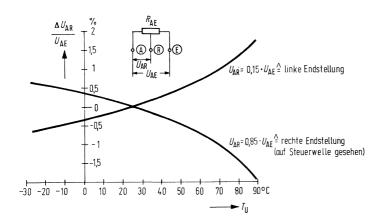



Abb. 4: Temperaturgang des Gesamtwiderstandes RAF

Gehäuse: IP40 Lötanschlüsse: IP00 500 V (eff), 50 Hz

 -30° C bis $+90^{\circ}$ C -50° C bis $+130^{\circ}$ C

Abb. 5: Temperaturgang der Spannungsteilung bei linker und rechter Endstellung der Steuerwelle

Feldplatten

Gesamtwiderstand bei $T_U = 25^{\circ}$ C Exemplarstreuung	R _{AE}	500 ±5	Ω %
Belastbarkeit Linearer Arbeitsbereich bei Verwendung als	P _{tot}	max. 0,5	w
Spannungsteiler (keine Begrenzung durch Anschläge) Kleinster einstellbarer Restwiderstand	$arphi R_0$	±135 50 bis 75	Grad Ω
Fehler			
Max. Linearitätsfehler bei $+25^\circ$ C und Leerlauf (je nach Ausführung). Die Werte gelten für den linearen Arbeitsbereich und sind bezogen auf $R_{\rm AE}=500\Omega$	F _L	±0,6 ±1,0 ±1,75	% % %

Einfluß des magnetischen Nebenschlusses:

Der Gesamtwiderstand R_{AE} kann durch benachbartes Eisenblech (magnetischen Nebenschluß) verändert werden. Bei 2 mm dickem Eisenblech und allseitigem Abstand x zwischen Potentiometer und Eisenblech gelten folgende Richtwerte:

Änderung von R_{AE} bei $x = 5$ mm	≦8	%
Änderung von R_{AE} bei $x = 15 \mathrm{mm}$	≦ 3	%

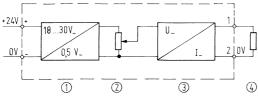
Mechanische Daten an der Stellachse

Erforderliches Drehmoment	$M_{ m derf}$	< 0,3	N-	cm
Typischer Wert		0,1	N⋅cm	
(gleichbleibend im linearen Arbeitsbereich)				
zul. Axiallast (statisch)	P _{am}	≦ 100	N	Grenzwerte zur
(dynamisch)	P_{am}	≦ 5		Einhaltung der
zul. Radiallast	$P_{\rm rm}$	≨ 50	N	Widerstands-
				, charakteristik
max. Drehzahl	n _{max}	≦1000	U/	min

Bei Einhaltung der angegebenen Belastungsgrenzen und einer Drehzahl $n=500\,\mathrm{U/min}$ ist eine Lebensdauer der Lager bei Dauerbetrieb von mindestens 5000 Stunden zu erwarten.

Rüttel- und Schockprüfung nach DIN 40 046 Blatt 7 und 8

Ausführung mit eingebautem Verstärker


Das kontaktlose Potentiometer FP 300 N 2 imes 35 ist auch als Sonderausführung mit eingebautem Verstärker lieferbar.

Gegenüberstellung der beiden Typen:

	Kontaktloses Potentiometer ohne Verstärker	Kontaktloses Potentiometer mit angebautem Verstärker
Anschluß- spannung U _{AE}	Stabilisierte Anschlußspannung erforderlich	Unstabilisiert (Stabilisierte Spannung wird intern erzeugt)
Ausgangs- signal	Spannung (Wert je nach Anschlußspannung)	Eingeprägter Strom (Mit Bürdenwiderstand kann die benö- tigte Spannung gebildet werden)
Fehler- kompensation	Internnichtvorgesehen	Nullpunkts-, Proportionalitäts- und Temperaturfehler werden in der Schaltung kompensiert
Austausch	Exemplarstreuungen des Gesamt- widerstandes und der Grund- widerstände wirken sich aus	Einstellmöglichkeiten gewähr- leisten gute Austauschbarkeit

Der Verstärker besteht aus einer Stabilisierungsschaltung und der eigentlichen Verstärkerschaltung.

Abb. 6: Blockschaltbild

- 1 Stabilisierungsschaltung
- 2 Feldplattenpotentiometer
- 3 Verstärkerschaltung, U/I-Umsetzung
- 4 Bürde O bis 500 Ω

Durch Vertauschen zweier steckbarer Drahtbrücken hinter der Verstärkerplatine lassen sich wahlweise die nachstehenden Kennlinien erzielen (bei Rechtsdrehung mit Blickrichtung auf die Steuerwelle).

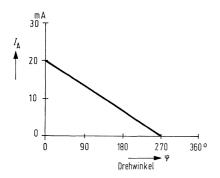


Abb. 7 a: **Kennlinie des Potentiometers** bei Lieferung

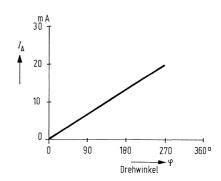


Abb. 7 b: **Kennlinie des Potentiometers** nach Vertauschen der Drahtbrücken

Einstellelemente

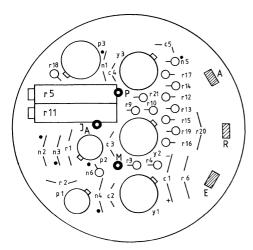
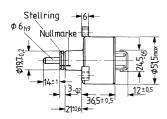
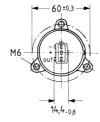


Abb. 8: Anordnung der Bauelemente auf der Leiterplatte

Das Potentiometer r_5 dient zur Einstellung des Nullpunktes, mit dem Potentiometer r_{11} kann die Proportionalverstärkung und damit der Aussteuerbereich eingestellt werden (Abb. 8).

U_{B}	+24 (+18 bis +30)	\ \
IA	<0,1 bis 20	mA
$\frac{I}{I}$		mA mA
Γ R _L φ	0 bis 650 0 bis 270 einstellbar mit Potentiometer r ₅ einstellbar mit Potentiometer r ₁₁ - 25 bis + 75	Ω Grad
T _K T _K	typ max ±0,2 ±0,4 ±0,33 ±0,66	‰/K ‰/K
	I _A I I R _L φ	$I_{A} = \begin{pmatrix} (+18 \text{ bis } + 30) \\ < 0.1 \text{ bis } 20 \end{pmatrix}$ $I_{A} = \begin{pmatrix} 25 \\ I \\ 45 \\ R_{L} \\ \varphi \\ 0 \text{ bis } 650 \\ 0 \text{ bis } 270 \\ \text{ einstellbar mit } \\ \text{Potentiometer } r_{5} \\ \text{ einstellbar mit } \\ \text{Potentiometer } r_{11} \\ -25 \text{ bis } + 75 \end{pmatrix}$ $T_{K} = \frac{\text{typ} \text{max}}{\pm 0.2 \pm 0.4}$


FP 310 L 100, FP 311 L 100, FP 312 L 100 und FP 313 L 100 sind kontaktlose Potentiometer mit hoher Lebensdauer. Wenn Verschleißfreiheit, unendliche Auflösung und hohe Lebensdauer Anforderungen an ein Potentiometer sind, stellen die Feldplattenpotentiometer der Serie FP 310/311/312/313 eine ideale Lösung dar. Diese Potentiometer sind in einem Aluminium-Druckgußgehäuse mit einer Steckeraufnahme für einen wasserdichten Stecker erhältlich.


Die verstärkerlosen Ausführungen FP 312 L 100 und FP 313 L 100 haben eine sinusähnliche Kennlinie, wobei der lineare Bereich ca. 75° beträgt. Der Gesamtwiderstand liegt bei etwa 850 Ω .

Beim FP 312 L 100 ist die Potentiometerwelle kugelgelagert, so daß das notwendige Drehmoment sehr klein ist. Das FP 313 L 100 hat eine Sinterbuchsenlagerung.

Die anderen Ausführungen sind mit einem Verstärker ausgestattet, der das Feldplattensignal in einen eingeprägten Strom umsetzt. Mit einem Bürdenwiderstand kann dann der Ausgangsspannungshub festgelegt werden. Dabei wird das FP 310 L 100 (eine Kugellagerausführung) wahlweise mit 30° oder 75° Drehwinkel angeboten, das FP 311 L 100 (eine Sinterbuchsenausführung) setzt 25° linear um.

Тур	Bestellnummer
FP 310 L 100-30	Q65310-L100-U30
FP 310 L 100-75	Q65310-L100-U75
FP 311 L 100-25	Q65311-L100-U25
FP 312 L 100	Q65312-L100-U
FP 313 L 100	Q65313-L100-U

Maße in mm

Gewicht etwa 135 g

244 L 400 // ED 212 L 100 | ED 212 L 100 |

2,5

≤ ±1

2,5

≤ ±1

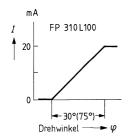
Grenzdaten		FP 310 L 100/ 30° + 75°	FP 311 L 100/ 25°	FP312L100	FP313L100	
Betriebsgleichspannung	U_{B}	+ 15	+ 15	8	8	V
Stromaufnahme	I	≦ 75	≦ 75	≦ 30	≦ 30	mA
Betriebstemperatur-						
bereich	Τ	-25 bis + 70	-25 bis + 70	<i>–</i> 25 bis + 70	– 25 bis + 70	°C
Kenndaten ($T = 25^{\circ}$ C)						
Linearer	φ	0 bis 30/	0 bis 25	75	75	0
Drehwinkelbereich		0 bis 75				0
Ausgangssignal für den	I_{A}	0 bis 20	0 bis 20	_	_	mA*
entspr. Drehwinkelbereich	U_{A}	_	_	40	40	% <i>U</i> B
Bürdenwiderstand	R_{L}	0 bis 500	0 bis 500	> 50 000	> 50 000	Ω
Gesamtwiderstand	R	_	_	850	850	Ω typ
Temperaturfehler		±3	±3	nicht	nicht	%typ
$zw25^{\circ}Cu. +70^{\circ}C$				kompensiert	kompensiert	
Linearitätsfehler <i>F</i> L		30°-Ausf.:1	1	25	2.5	%tvp

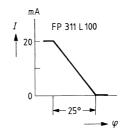
≤ ±1

links

75° - Ausf.: 2

≤ ±1


rechts


Kennlinien


Hysteresefehler

(auf Welle gesehen)

Drehrichtung

%typ

%

^{*} eingeprägt

Qualitätsangaben

5.4. Angaben zur Qualität

- Um die Qualität bei Halbleiterbandelementen zu kennzeichnen, wird folgendes angegeben:
- 1.1. Grenzwerte sowie obere und untere Streuwerte der Kenngrößen,
- 1.2. Maximale Anteile fehlerhafter Bauelemente, sogenannte AQL-Werte (annehmbare Qualitätslage), für die unter 1.1 genannten Werte. Bei der Beurteilung der Lieferqualität sind die Gesetze der Statistik zu berücksichtigen (siehe auch Punkt 4 dieses Abschnittes).
- 2. Fehler

Ein Fehler liegt vor, wenn ein Bauelementemerkmal nicht den Datenblattangaben entspricht. Die Fehler werden entweder nach Art oder nach Ausmaß eingeteilt:

- 2.1. Einteilung nach Art der Fehler:
 - 2.1.1. Fehler an Gehäusen und Zuleitungen
 - 2.1.2. Fehler in elektrischen Eigenschaften
- 2.2. Einteilung nach Ausmaß der Fehler:
 - 2.2.1. Totalfehler: Fehler, die jede funktionsgemäße Verwendung ausschließen
 - 2.2.2. Graduelle Fehler:

Fehler, die eine funktionsgemäße Verwendung noch bedingt zulassen.

 AQL-Werte, diese werden in den Datenblättern mit einem Stern (*) gekennzeichnet. Die für die verschiedenen Fehler gültigen AQL-Werte sind in der unten angegebenen Tabelle aufgeführt.

Fehler bezüglich oberer oder unterer Streuwerte zählen getrennt.

Fehler	AQL-Wert	Bemerkungen	
3.1. Fehler an Gehäusen und Zuleitungen 3.1.1. Totalfehler 3.1.2. Graduelle Fehler	0,25 % 2,5 %	Summe der Fehler	
3.2. Fehler der elektronischen Eigenschaften3.2.1. Totalfehler3.2.2. Graduelle Fehler	0,25%	Summe aller Fehler	
bei Kenngrößen mit *	0,65 % 2,5 %	für jeden Fehler Summe aller Fehler	
bei Kenngrößen ohne *	Die Streuwerte dieser Kenngrößen w den so angegeben, daß etwa 2,5 % des Produktes oberhalb bzw. unterhalb lie gen können.		

4. Eingangskontrolle

Die vom Hersteller durchgeführten Kontrollen sollen eine Eingangskontrolle beim Anwender unnötig machen. Will der Anwender dennoch eine Eingangskontrolle vornehmen, so wird die Verwendung eines Stichprobenplanes nach folgenden Vorschriften empfohlen:

DIN 40080 (Mil STD 105 D)

ASQ-Stichproben-Tabellen zur Attributprüfung ASQ/AWF1 (zu beziehen durch Beuth-Vertrieb GmbH, Berlin W 15 und Köln).

Anschriften unserer Geschäftsstellen

Unsere Geschäftsstellen mit Bauteile-Vertrieb

Bundesrepublik Deutschland und Berlin (West)

Siemens AG
Salzufer 6–8
Postfach 110560
1000 Berlin 11
FO (300) 3939-1, III 1810-278
FAX (030) 3939-2630

Siemens AG Schweriner Straße 1 Postfach 7820 4800 Bielefeld 1 © (0521) 291-1 IX 932805

Siemens AG Contrescarpe 72 Postfach 107827 2800 Bremen

ক (0421) 364-1, ছে 245451 FAX (0421) 364-687

Siemens AG Lahnweg 10 Postfach 1115 **4000 Düsseldorf 1** ♂ (0211) 3030-1, Is 8581301 FAX (0211) 3030-506

Siemens AG Rödelheimer Landstraße 5–9 Postfach 111733 6000 Frankfurt 1 6 (0611) 797-0, 5 414131 FAX (0611) 797-2253

Siemens AG Habsburgerstraße 132 Postfach 1380 7800 Freiburg 1 © (0761) 2712-1 In 772842 Siemens AG Lindenplatz 2 Postfach 105609 **2000 Hamburg 1** ☎ (040) 282-1. ☑ 2162721 FAX (040) 282-2210

Siemens AG Am Maschpark 1 Postfach 5329 **3000 Hannover 1** ₱ (0511) 199-1, № 922333 FAX (0511) 199-2799

Siemens AG Wittland 2 Postfach 4049 2300 Kiel 1 © (0431) 5860-1 IX 292814

Siemens AG N 7, 18 (Siemenshaus) Postfach 2024 **6800 Mannheim 1** \$\frac{1}{5}\$ (0621) 296-1, \$\frac{1}{2}\$ 462261 FAX (0621) 296-222

Siemens AG Von-der-Tann-Straße 30 Postfach 4844 8500 Nürnberg 1 ₱ (0911) 654-1, № 622251 FAX (0911) 654-3436, 34614, 3716

Siemens AG Geschwister-Scholl-Straße 24 Postfach 120 **7000 Stuttgart 1** \$\sigma(0711) 2076-1, \$\square\$ 723941 FAX (0711) 2076-706

Siemens AG Nicolaus-Otto-Straße 4 Postfach 3606 **7900 Ulm 1 6** (0731) 499-1 **13** 712826

Siemens AG Andreas-Grieser-Str. 30 Postfach 3280 8700 Würzburg 21 © (0931) 801-1

Siemens Bauteile Service Lieferzentrum Fürth Postfach 146 8510 Fürth-Bislohe © (0911) 3001-1, Is 623818

EUROPA

Belgien

Siemens S.A. chaussée de Charleroi 116 B-1060 Bruxelles ↑ (02) 5373100, ☑ 21347

Bulgarien

RUEŇ, Büro für Firmenvertretungen und Handelsvermittlungen bei der Vereinigung "Interpred" San Stefano 14/16 BG-1504 Sofia 4 ♂ 457082. ☑ 22763

Dänemark

Siemens A/S Borupvang 3 DK-2750 Ballerup ▼ (02) 656565, ဩ 35313

Finnland

Siemens Osakeyhtiö Mikonkatu 8 Fach 8 **SF-00101 Helsinki 10** ᢒ (90), 1626-1, ☑ 124465

Frankreich

Siemens S.A.
39–47, boulevard Ornano
F-93200 Saint-Denis
(B.P. 109, F-93203 Saint Denis
CEDEX 1)
(für Personalpost: B.P. 122,
F-93204 Saint-Denis CEDEX 1)
70 (16-1) 8206120, 13 620853

Griechenland

Siemens Hellas E.A.E. Voulis 7 P.O.B. 601 **Athen 125** ♂ (01) 3293-1, ⋈ 216291

Großbritannien

Siemens Ltd.
Siemens House
Windmill Road
Sunburry-on-Thames
Middlesex TW 16 7HS
© (09327) 85691, Ix 8951091

Irland

Siemens Limited 8, Raglan Road **Dublin 4** ★ (01) 684727, ★ 5341

Island

Italien

Siemens Elettra S.p.A. Via Fabio Filzi, K 25/A Casella Postale 41 83 I-20124 Milano ☎ (02) 6248, ဩ 330261

Jugoslawien

Generalexport
UI. Narodnih heroja 43/XV
YU-11070 Novi Beograd

▼ (011) 693-321, ☑ 11287

Luxembura

Siemens S.A. 17, rue Glesener B.P. 1701 Luxembourg ↑ 49711-1, ☑ 3430

Niederlande

Siemens Nederland N.V. Wilhelmina van Pruisenweg 26 NL-2595 AN Den Haag (Postbus 16068, NL-2500 BB Den Haag) © (070) 782782, j 31373

Norwegen

Siemens Ā/S Østre Aker vei 90 Postboks 10, Veitvet N-Oslo 5 ♂ (02) 15 30 90, ဩ 18477

Österreich

Siemens Aktiengesellschaft Österreich Apostelgasse 12 Postfach 326 **A-1031 Wien** ♂ (0222) 7293-0, ເ 131866

Polen

PHZ Transactor S.A. ul. Stawki 2 P.O.B. 276 **PL-00-950 Warszawa ©** 398910, ☑ 815554

Portugal

Siemens S.A.R.L. Avenida Almirante Reis, 65 Apartado 1380 P-1100 Lisboa-1 ♂ (019) 538805, ☑ 12563

Rumänien

Siemens birou de consultații tehnice Strada Edgar Quinet Nr. 1 R-70106 București 1 7 151825, 12 11473

Schweden

Siemens AB Norra Stationsgatan 63-65 Box 23141 S-10435 Stockholm ☎ (08) 161100, ဩ 11672

Schweiz

Siemens-Albis AG Freilagerstraße 28 Postfach **CH-8047 Zürich** ♂ (01) 495-3111, ™ 52131

Spanien

Siemens S.A. Orense, 2 Apartado 155 **Madrid 20** ⑤ (91) 4552500, ⅓ 42241

Tschechoslowakei

EFEKTIM, Technisches Beratungsbüro Siemens AG Anglická ulice 22, 3. Stock P.O.B. 1087 CS-12000 Praha 2 ♂ 258417, ☑ 122389

Ungarn

Sicontact KFT GmbH Bártfai u. 54 H-1115 Budapest XI ☎ (01) 868044, ऻ 224133

Union der Sozialistischen Sowjetrepubliken

Ständige Vertretung der Siemens AG in Moskau Internationales Postamt Postfach 77 SU-Moskau G 34 2027711. 12 7413

AFRIKA

Ägypten

Siemens Resident Engineers 33, Dokki Street P.O.B. 775 **Dokki/Cairo** Arab Republik Egypt 5 982671, 123 321

Äthiopien

Addis Electrical Engineering Ltd. P.O.B. 5505 Addis Ababa ↑ 151599, ဩ 21052

Algerien

Siemens Algèrie S.A.R.L. 3, Viaduc Youghourta B.P. 224, Alger-Gare Alger 6 61 59 66/67, 🖾 52817

Libyen

Siemens Resident Engineers 17, First September Street P.O.B. 46 Tripoli ♂ 41534. ☑ 20029

Marokko

SETEL
Société Electrotechnique
et de Télécommunications S.A.
Immeuble Siemens
km 1, Route de Rabat
Casablanca-Ain Sebåa
© 351025, 🖾 25914

Nigeria

Siemens Nigeria Ltd.
Siemens House
Industrial estate 3 f,
Block A
P.O.B. 304, Apapa
Oshodi (Lagos)
© 842502, [S 21357

Sudan

National Electrical & Commercial Company (NECC) P.O.B. 1202 Khartoum Republic of Sudan ♥ 80818. ™ 642

Südafrika

Siemens Limited Siemens House, Corner Wolmarans and Biccard Streets, Braamfontein 2001 P.O.B. 4583 Johannesburg 2000 ♥ (011) 7159111, ☑ 4-22524

Tunesien

Sitelec S.A., Immeuble Saâdi - Tour C Route de l'Ariana **Tunis-El Menzah TN ©** 231526, ⋈ 12326

Zaire

Siemens Zaire S.A.R.L. B.P. 9897 5e und 6e Straße (Limité) Kinshasa 1 ♂ 77206, ☑ 21377

AMERIKA

Argentinien

Siemens S.A. Avenida Pte. Julio A. Roca 516 Casilla Correo Central 1232 RA-1067 Buenos Aires ♂ 00541/300411, ☑ 021812

Bolivien

Sociedad Comercial é Industrial Hansa Limitada CalleMercadoesquinaYanacocha Cajón Postal 1402 La Paz © 320289. IN 5261

Brasilien

Siemens S.A.
Sede Central
Avenida Mutinga, 3650
Pirituba
BR-05110 São Paulo-SP
(Caixa Postal 1375,
BR-01000 São Paulo)
© (011) 2610211
© 11-23641

Chile

Gildemeister S.A.C., Division Siemens Huerfanos 587 Santiago de Chile ₹ 82523, ☐ TRA SGO 392, TDE 40588 FAX 82523

Ecuador

Siemens S.A.
Panamericana Norte y
Manuel Zambrano
Casilla de Correos 3580
Quito
5 537666, 🖾 22190

Kanada

Siemens Electric Limited 7300 Trans-Canada Highway (P.O.B. 7300, Pointe Claire, Québec H9R 4R6) 5 (514) 6957300, 🖾 5-822778

Kolumbien

Siemens S.A. Carrera 65, No. 11-83 Apartado Aéreo 80150 **Bogotá 6** ₹ 2628811, I 44750

Mexico

Siemens S.A.
Poniente 116, No. 590
Col. Ind. Vallejo
Apartado Postal 15064
02300 México, D.F.
₱ 5670722, ☑ 1772700

Uruguay

Conatel S.A. Ejido 1690 Casilla de Correo 1371 Montevideo ▼ 917331, ⋈ 6664

Venezuela

Siemens S.A. Avenida Don Diego Cisneros Urbanización los Ruices Apartado 3616 Caracas 1010 A ♂ (02) 2392133, ᠍ 25131

Vereinigte Staaten von Amerika

Siemens Corporation 186 Wood Avenue South Iselin, New Jersey 08830 5 (201) 494-1000 TW WU 844491 TWX WU 7109980588

ASIEN

Afghanistan

Afghan Electrical Engineering and Equipment Limited Alaudin, Karte 3 P.O.B. 7 Kabul 1 © 40446, IS 35

Bangladesch

Siemens Bangladesh Ltd. 74, Diskusha Commercial Area P.O.B. 33 Dacca 2 5 23 1381, 12 642424 bj

Hongkong

Jebsen & Co., Ltd.
Siemens Division
Prince's Building, 24th floor
P.O.B. 97
Hong Kong
₱ 5225111, ™ 73221

Indien

Siemens India Ltd. Head Office 134-A, Dr. Annie Besant Road, Worli P.O.B. 6597 Bombay 400018 © 379906. ☑ 112373

Indonesien

Repräsentative Siemens AG Jl. Kebon Sirih 4 P.O.B. 332 **Jakarta Pusat** ♂ 351051, ဩ 46222

irak

Iran

Siemens Sherkate Sahami Khass Ave. Ayatolla Taleghani 32 Siemenshaus **Teheran 15** 7 (021) 614-1, 🗵 212351

Japan

Siemens K.K.
Delegates to Fuji Electric
c/o Fuji Electronic Components Ltd.
New Yurakucho Bldg., 7th floor
12-1, Yurakucho 1-chome,
Chiyoda-ku
Tokyo 100

201-2451, ☑ j22130

Korea

Siemens Electrical Engineering Co., Ltd. C.P.O.B. 3001 Seoul ↑ 7783431, ⅓ 23229

Kuwait

National & German Electrical and Electronic Service Company NGEECO P.O.Box 6612 Hawalli Kuwait, Arabia © 831544, 🖾 22777

Libanon

Ets. F. A. Kettaneh S.A. (Kettaneh Frères)
Medawar
P.B. 110242
Beyrouth
\$\tilde{2}\$ 251040, \$\tilde{1}\$\$\tilde{2}\$ 20614

Malaysia

Electcoms Bumi Engineering Sdn. Bhd. Lot 18, Jalan 225 P.O.B. 310 Petaling Jaya/Selangor 7 762563, IX 37418

Pakistan

Siemens Pakistan Engineering Co. Ltd. Ilaco House, Abdullah Haroon Road P.O.B. 7158 Karachi 3 5 516061, 🖾 2820

Philippinen

Maschinen + Technik Inc. (MATEC) Greenbelt Mansion, Ground Floor, Perea Street, Legaspi Village Makati P.O.Box 7129-s, ADC, MIA Manila 8 8181321, TXM1, 63972

Saudi-Arabien

Arabia Electric Ltd. Head Office P.O.B. 4621 Jeddah ₱ 009662/6605089 ■ 401864 FAX 6605089

Singapur

Siemens Components Pte. Ltd. Promotion Office Block 7 Ayer Rajah Industrial Estate Singapore 0513 © 7760283. Ls RS 21000

Syrien

Syrian Import Export & Distribution Co., S.A.S. SIEDCO Port Saïd Street P.O.B. 363 Damas ₱ 113431/32, ⅓ 11267 sy

Taiwan

Tai Engineering Co. Ltd. 6th Floor Central Building No. 108 Chung Shan N. Rd. Sec. 2 P.O.Box 68-1882 Taipei 5 536 3171, 152 27 860 tai engco

Thailand

B. Grimm & Co., R.O.P. 1643/4,Phetburi Road (Extension) G.P.O.B. 66 Bangkok 10 ☎ 2524081, ™ 2614

Türkei

ETMAŞ Elektrik Tesisati ve Mühendislik A.Ş. Meclisi Mebusan Caddesi 55/35 Findikli P.K. 1001 Karakoey Istanbul ♣ 009011/452090, ☑ 24233

Yemen (Arab. Republik)

Tihama Tractors & Engineering Co. Ltd. P.O.B. 49 Sanaa Yemen Arab Republic ₱ 2462, ⅓ 2217

AUSTRALIEN

Siemens Ltd. 544 Church Street, Richmond **Melbourne**, **Vic. 3121 ○** (03) 4297111, **□** 30425

Notizen

Inhaltsverzeichnis			
Magnetik			
Hallgeneratoren			
Feldplatten			
Datenteil			
Anschriften unserer	Geschäfts	sstellen	